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Abstract

The distribution of fitness effects (DFE) for new mutations is one of the most theoretically important but difficult to estimate properties in
population genetics. A crucial challenge to inferring the DFE from natural genetic variation is the sensitivity of the site frequency spectrum
to factors like population size change, population substructure, genome structure, and nonrandom mating. Although inference methods
aim to control for population size changes, the influence of nonrandom mating remains incompletely understood, despite being a common
feature of many species. We report the DFE estimated from 326 genomes of Caenorhabditis elegans, a nematode roundworm with a high
rate of self-fertilization. We evaluate the robustness of DFE inferences using simulated data that mimics the genomic structure and repro-
ductive life history of C. elegans. Our observations demonstrate how the combined influence of self-fertilization, genome structure, and
natural selection on linked sites can conspire to compromise estimates of the DFE from extant polymorphisms with existing methods.
These factors together tend to bias inferences toward weakly deleterious mutations, making it challenging to have full confidence in the in-
ferred DFE of new mutations as deduced from standing genetic variation in species like C. elegans. Improved methods for inferring the
DFE are needed to appropriately handle strong linked selection and selfing. These results highlight the importance of understanding the
combined effects of processes that can bias our interpretations of evolution in natural populations.
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Introduction
Understanding the distribution of fitness effects (DFE) of new
mutations is necessary to characterize the role of mutation in the
evolutionary process and to determine the full impact that muta-
tions have on the fitness of individuals and populations. The DFE
influences the rate and trajectory of adaptive evolution (Orr 2000;
Good et al. 2012), the maintenance of genetic variation
(Charlesworth et al. 1995), the evolution of sex and recombination
(Peck et al. 1997), the fate of small populations (Schultz and
Lynch 1997), the molecular clock (Ohta 1992), the rate of decay of
fitness due to Muller’s Ratchet (Loewe 2006), and the evolution of
the mutation rate itself (Kondrashov 1995; Lynch 2008).
Understanding the DFE also is necessary for accurate characteri-
zation of the genetic basis of complex traits, including human
disease (Eyre-Walker 2010), and has been sought for decades
(Eyre-Walker and Keightley 2007; Boyko et al. 2008; Kousathanas
and Keightley 2013; Charlesworth 2015; Kim et al. 2017; Tataru

et al. 2017). Any dynamic model of evolution must either define
the DFE explicitly and assume its distribution or ignore the vary-
ing effects of mutations. Despite these fundamental roles, the
DFE is a challenging property to estimate (Eyre-Walker and
Keightley 2007; Charlesworth 2015).

The DFE defines the probability that a new mutation will alter
organismal survival or reproduction by a given magnitude.
Following common practice, we restrict our consideration of the
DFE to new deleterious mutations that reduce fitness relative to
the ancestral state. This DFE can be quantified in two basic ways:
(1) from direct experimental measurement of fitness effects of
new mutations or mutation panels (Thatcher et al. 1998; Sanjuán
et al. 2004; DePristo et al. 2007) or (2) from indirect inference using
the site frequency spectrum (SFS) of genetic variants in popula-
tions (Loewe et al. 2006; Keightley and Eyre-Walker 2007; Boyko
et al. 2008). Using the SFS-based approach, population genomic
data have been used to infer the DFE for many organisms (Boyko
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et al. 2008; Kousathanas and Keightley 2013; Charlesworth 2015;
Kim et al. 2017; Tataru et al. 2017). With rare exceptions, these
taxa are predominantly or obligately outcrossing. The SFS ap-
proach benefits from the large number of mutations, accessible
with genome sequencing methods, that have experienced a fairly
long evolutionary history in the natural environment. However,
the utility of the SFS approach depends on the ability of analyti-
cal methods to use the observed standing genetic variation to
correctly infer the effects of new mutations.

An accurate inference of the DFE allows one to understand the
evolutionary trajectory that mutations will follow, because the
selection coefficient conferred by any given mutation (s) com-
bines with the effective size of the population in which it arose
(Ne) to determine the efficacy of selection (Nes) on that variant.
The accuracy of the SFS inference method is challenged, how-
ever, by its sensitivity to nonequilibrium demography, population
structure, and nonrandom mating (Eyre-Walker 2006).
Demographic changes like population size expansions or contrac-
tions that mimic some effects of natural selection can lead to
mischaracterization of the DFE (Eyre-Walker and Keightley 2007).
Population size changes and cryptic population structure should
largely be accounted for with existing methods that contrast two
sets of loci: one set presumed to be selectively neutral (e.g., four-
fold degenerate sites in coding sequences) and thus reflecting
neutral demographic change, vs a second set presumed to experi-
ence the direct effects of selection (e.g., zerofold degenerate sites
in coding sequences) in addition to the selectively neutral effects
of demography (Keightley and Eyre-Walker 2007).

Nonrandom mating, of which self-fertilization is the most ex-
treme form, presents a more difficult problem. Inbreeding
reduces the effective recombination rate (Nordborg 1997), which
exacerbates the effects of selection at linked loci (Felsenstein
1974; Charlesworth and Wright 2001; Cutter and Payseur 2013).
With reduced recombination, individual variants may no longer
have independent evolutionary trajectories, as the fitness effects
of their nearby genomic neighbors can play a role in changing the
allele frequency of a focal variant (Hill-Robertson interference;
Hill and Robertson 1966). How Hill-Robertson interference affects
inference of the DFE from the SFS cannot easily be predicted a pri-
ori. Furthermore, self-fertilization also exposes more variants as
homozygous in the population, erasing possible effects of additiv-
ity in heterozygotes. In outcrossing taxa, selection against delete-
rious alleles typically occurs in heterozygotes, because recent
deleterious mutations will be present as rare alleles that almost
always occur in a heterozygous state. Excess homozygosity
caused by self-fertilization thus means that selection on homozy-
gous genotypes will be a major driver of allele frequency change
with potentially profound implications for inference of the DFE
from variant frequencies. Few studies have inferred the DFE in
nonobligately outcrossing organisms (Arunkumar et al. 2015;
Huber et al. 2018), motivating deeper investigation into the impact
of extreme selfing on DFE estimation.

Here, we report the DFE estimated from the SFS of a globally
distributed collection of Caenorhabditis elegans, a nematode round-
worm with a 99 to 99.9% rate of self-fertilization (Cutter et al.
2019). In this species, the rate of recombination varies along the
holocentric chromosomes with low recombination in the central
third of autosomes that also are gene-dense and enriched for es-
sential genes (C. elegans Sequencing Consortium 1998; Cutter et al.
2009; Rockman and Kruglyak 2009). These features stand in stark
contrast to the genomes of many outcrossing taxa (e.g., Drosophila
and mammals), in which regions of low recombination are de-
pleted of genes, especially essential genes. In C. elegans, genome

architecture combines with selfing to cause strong linked selec-

tion (Cutter and Payseur 2003; Andersen et al. 2012; Thomas et al.

2015; Crombie et al. 2019). Selfing and linked selection in C. elegans

contribute to a nearly 100-fold reduced polymorphism relative to

the hyperdiversity of obligately outcrossing congeners [e.g.,

Caenorhabditis remanei and Caenorhabditis brenneri; (Cutter et al.

2013; Dey et al. 2013)]. This influence also is observed within the

genome: nucleotide diversity in low-recombination regions is

fivefold lower than in high-recombination regions (Rockman and

Kruglyak 2009; Andersen et al. 2012; Thomas et al. 2015; Lee et al.

2021). We estimate the homozygous DFE for C. elegans by the

maximum likelihood method implemented in the DFE-alpha

software (Keightley and Eyre-Walker 2007; Eyre-Walker and

Keightley 2009). Further, we evaluate the robustness of the in-

ferred DFE from simulated data that matches the genome archi-

tecture and life history of C. elegans to understand how the joint

effects of self-fertilization, genome structure, and natural selec-

tion influence estimates of the DFE.

Materials and methods
Caenorhabditis elegans genome-wide variant data
The C. elegans genome-wide variant data were acquired from the

C. elegans Natural Diversity Resource 20200815 release (Cook et al.

2017). These data were generated by aligning Illumina short reads

from each strain to the WS276 N2 reference genome (Lee et al.

2018) and then calling variants using the GATK4 (v4.1.4.0)

HaplotypeCaller function and recalled using the GenomicsDBImport

and GenotypeGVCFs functions (Poplin et al. 2018). Variants were

annotated using SnpEff (v4.3.1) (Cingolani et al. 2012). These pro-

cesses and pipelines are described on the C. elegans Natural

Diversity Resource Release page under the “Methods/Pipelines”

tab. This site also includes links to all GitHub repositories for

pipelines to reproduce these data. To generate the site frequency

spectra, we filtered the CeNDR VCF to contain the recently de-

scribed 328 strain set (Lee et al. 2021), but two strains were re-

moved. The strain ECA701 was removed because of high levels of

residual heterozygosity, and the strain JU1580 was removed be-

cause it was found to be in the JU1793 isotype in the 20200815

CeNDR release. The final strain list contained 326 strains

(Supplementary Table S1).

Generation of swept and divergent strain sets
The variants for all spectra were polarized using the XZ1516

strain as the ancestor, so this strain is not included in any spec-

tra. For each SFS, we further pruned the VCF to contain only sites

with no missing genotype data and with allele frequencies

greater than 0%. We generated 18 SFS that encompass three dif-

ferent subsets of C. elegans strains, three different genomic

regions, and two different site class comparisons. For the three

different subsets of C. elegans strains, we used (1) the entire popu-

lation sample (n¼ 325, 326 minus XZ1516), (2) the subset of

“swept” strains (n¼ 273), and (3) the subset of “divergent” strains

(n¼ 52). We classified a strain as “swept” if any of chromosomes I,

IV, V, or X contained greater than or equal to 30% of the same

haplotype (Andersen et al. 2012). Any strains not among the

swept strains were classified as “divergent” (Supplementary

Table S1). The chromosome scale selective sweeps cause the

most significant population structure effects across this strain

set with limited additional contribution of geography (Andersen

et al. 2012; Lee et al. 2021).
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Chromosome regions and generation of site
frequency spectra
Caenorhabditis elegans chromosomes have distinct recombination
domains where arms recombine more than centers (Rockman
and Kruglyak 2009). In our analyses, we separately analyzed (1)
the whole genome, (2) high recombination chromosome arms, or
(3) low recombination chromosome centers, as defined previ-
ously (Rockman and Kruglyak 2009). Population diversity sum-
mary statistics were calculated for all three sets of strains
(Table 1). For the two different site class comparisons within cod-
ing sequences, we used (1) Fourfold vs zerofold degenerate sites
only or (2) Fourfold vs the combination of zerofold degenerate
sites and sites annotated as causing high or moderate deleterious
effects as predicted by SnpEff (Cingolani et al. 2012). The R pack-
age SeqinR (Charif and Lobry 2007) was used to parse gene posi-
tions and a custom script was used to classify the degeneracy of
each nonvariant site as zero- or fourfold degenerate. We gener-
ated BED files (Quinlan and Hall 2010) of zero- and fourfold de-
generate sites using a custom AWK script that categorizes the
alleles as ancestral or derived, into specific chromosomal regions,
and by their predicted SnpEff effects. For inferring derived states,
we used the highly diverged strain XZ1516 as the outgroup be-
cause the most closely related species to C. elegans, Caenorhabditis
inopinata, is too far diverged to be useful as an outgroup (Kanzaki
et al. 2018; Lee et al. 2021). We then used vcfanno (Pedersen et al.
2016) to append these annotations to the original VCF file
(Danecek et al. 2011). The annotated variant data was extracted
from the VCF to a tab-separated file using BCFtools (Li 2011). This
file was used to generate the 18 site-frequency spectra
(Supplementary Files S1–S18).

Simulation of site frequency spectra with SLiM
We used SLiM v2.1 (Haller and Messer 2019) to conduct forward-
in-time simulations mimicking key features of C. elegans genome
structure and life history. We simulated a single population with
nonoverlapping generations. Population size was constant in a
given simulation with 99.9% of reproduction occurring via self-
fertilization, as well as a comparison set of simulations with full
outcrossing (N¼ 50,000 for outcrossing simulations and
N¼ 500,000 in selfing populations; see Supplementary Table S1).
We generated a 24 Mb genome to represent the coding fraction of
100 Mb C. elegans genome, divided into six 4 Mb chromosomes
comprising 1.44 Mb left and right arms and a 1.12 Mb center re-
gion (C. elegans Sequencing Consortium 1998). Recombination
varied between the arms and centers of each chromosome,
scaled to account for including only coding sequences in simula-
tions: 2.35� 10�7 crossovers per base pair per generation in arms,
4.96� 10�8 crossovers per base pair per generation in centers
(Rockman and Kruglyak 2009). This recombination profile leads
to a map length for each chromosome of �73cM, somewhat

longer than C. elegans chromosomes. Consequently, the effects of
linked selection will be weaker in the simulations than expected
for C. elegans populations and conservative with respect to the in-
fluence of selfing. We simulated mutations to arise at a uniform
rate across the genome (3.3� 10�9 mutations per base pair per
generation, or approximately 0.08 mutations per simulated ge-
nome per generation), with 75% of mutations subject to selection
and the remaining 25% neutral to match the incidence of replace-
ment- and synonymous sites in coding sequences (Saxena et al.
2019). Of the 75% of mutations with fitness effects, simulation
sets created either all selected mutations as deleterious or as
99.9% deleterious plus 0.1% beneficial. Beneficial mutations had
a gamma-distributed DFE with mean selection coefficient
s¼ 0.01, shape parameter b ¼ 0.3, and additive effects (h¼ 0.5).
The deleterious mutational effects followed a mixture of two
gamma distributions to best match the theoretical expectation
for biologically realistic DFEs: many small effect deleterious
mutations with few more recessive deleterious mutations of
larger effect (Eyre-Walker and Keightley 2007). Most of this mix-
ture distribution (95%) was defined by a gamma distribution
made up of many nearly neutral deleterious mutations with
mean s ¼ �0.001, shape b ¼ 0.3, and dominance, h¼ 0.3. The
remaining 5% of the distribution of deleterious fitness effects
came from a gamma distribution comprising mutations with
strong and more recessive effects to imitate the existence of re-
cessive lethals with mean s ¼ �0.01, b ¼ 0.3, and h¼ 0.2. We also
conducted a second set of simulations with a more extreme DFE
for deleterious mutations: a single gamma distribution with s ¼
�0.161, b ¼ 2.13, and h¼ 0.3 to serve as an example from a more
severely deleterious distribution of mutations, similar to that in-
ferred from the empirical C. elegans dataset.

DFE inference with DFE-alpha
We used DFE-alpha (Keightley and Eyre-Walker 2007) to infer the
DFE by maximum likelihood from both the empirical and simu-
lated datasets. We then compared the DFE derived from the em-
pirical and simulated datasets to test for deviations between the
inferred DFEs that might result from inaccurate or oversimplified
genomic architectures and evolutionary parameters. We then
conducted a second set of simulations that used DFE parameters
inferred from the empirical data as input for the simulations, re-
estimated the simulated DFE, and tested whether we could accu-
rately recover this underlying DFE. We also compared the DFE in-
ferred for polymorphisms linked to different chromosome
regions (arms vs centers). We used DFE-alpha with the two-epoch
model and the folded SFS, as recommended by the DFE-alpha
documentation and also as is commonly used across empirical
applications of the method. Input configuration files are archived
with the data in the GitHub repository below. We also averaged
the SFS across three sampling points in the simulations, at

Table 1 Caenorhabditis elegans datasets used to generate SFS for DFE inference

Dataset Num. strains Chromosome region hp hW

Full 325 Whole 0.001766758 0.003413565
Arms 0.002579272 0.004665253
Centers 0.00098359 0.00220825

Swept strains 273 Whole 0.001150452 0.001427463
Arms 0.002060343 0.002270279
Centers 0.00062137 0.000932747

Divergent strains 52 Whole 0.002795314 0.003263276
Arms 0.004194129 0.004985293
Centers 0.002097188 0.002181485
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generations 4N, 4.5N, and 5N prior to applying the inference ap-
proach as performed previously (Messer and Petrov 2013).

Results
We estimated the distribution of deleterious fitness effects from
the genomes of 325 strains of C. elegans, using DFE-alpha. All sub-
sets of the data showed that the highest densities in the inferred
distributions are for strongly deleterious mutations, with muta-
tions of weakest effect being the second most prevalent. For anal-
yses using only the zerofold degenerate sites designated as the
selected class of sites, 62.5% of mutations fall into the most se-
verely deleterious class and 17.3% into the weakest, nearly neu-
tral deleterious class (whole genome; Figure 1A). Chromosome
arms and centers have qualitatively similar profiles but with
arms exhibiting a somewhat greater density of highly deleterious
mutations (Figure 1). We also inferred the DFE using a more so-
phisticated categorization of selected sites beyond simply zero-
fold degenerate positions of coding sequences. In this approach,
we predicted deleterious functional effects of variants (SnpEff,
see Methods), including stop-gained, splice-site, and nonsynony-
mous variants. The overall profile for the DFE in these cases
exhibited decreased weight in the strongest deleterious class
(49.7% of mutations for the whole genome) at the expense of
more sites of weakly deleterious effects being inferred (23.2% for
the whole genome; Figure 1B). Again, chromosome arms showed
a greater relative weight in the most deleterious class compared
to chromosome centers.

To assess the reliability of these DFE inferences from standing
variation under extreme selfing, we conducted a series of
forward-time simulations that mimic C. elegans genome architec-
ture and reproduction. Inference of the DFE from simulated data
sets, where the true input DFE is known, resulted in different in-
ferred estimates than expected from the input mixture gamma
distribution (Figure 2A; Supplementary Table S2). This inferred
distribution comprised almost entirely nearly neutral mutations
(�Nes ¼ 0–1), regardless of linkage to chromosome arms or cen-
ters (Figure 2A). These results also differed starkly from what we
observed for the empirical C. elegans results. Our second set of
simulations used a more strongly deleterious input DFE, similar
to, but more extreme than, the DFE inferred from the C. elegans
data. In our simulations with high selfing, DFE-alpha was better
able to estimate the input DFE for this mutational spectrum that
was weighted toward strongly deleterious mutations (Figure 2B).
Curiously, however, it showed a U-shaped distribution with ex-
cess density in the nearly neutral class relative to the input
(Figure 2B), reminiscent of the pattern observed in the empirical
analysis of C. elegans genomes (Figure 1). For both input distribu-
tions that contained some beneficial mutations, DFE-alpha’s de-
mographic inference algorithm struggled to capture the
influence of the joint effects of selfing and linked selection as evi-
denced by the N2 coefficient reaching its maximum value of
N2¼ 1000 (Supplementary Table S2).

To further elucidate the impact and potential biases intro-
duced by selfing on our DFE inferences, we contrasted
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Figure 1 DFE inference for C. elegans based on coding sequence
polymorphism from genomes of 325 strains. Site frequency spectra of
polymorphisms derive from the whole genome (purple) or separately for
coding sequences in chromosome arms (blue) and centers (red), defined
by recombination rate boundaries (Rockman and Kruglyak 2009). The
neutral and selected classes for site frequency spectra provided to DFE-
alpha correspond to fourfold degenerate sites and zerofold degenerate
sites, respectively (A). An alternative selected site class also included the
sites characterized as having variants exerting high or moderate fitness
effects by SnpEff (B). All estimated parameters of the inferred DFE are
listed in Table 2. Error bars indicate 95% confidence intervals, estimated
from 5000 bootstrap replicates.
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Figure 2 Distributions of deleterious fitness effects for simulations
mimicking C. elegans genome structure and selfing reproductive mode
(99.9% selfing). (A) The inferred DFEs for deleterious mutations (colored
bars) from simulations with an input DFE (gray bars) of a mixture
gamma distribution (b¼0.3 for 95% mutations with mean s ¼ �0.001
and h¼ 0.3 plus 5% with mean s ¼ �0.01 and h¼ 0.2). (B) Inferred DFEs
for a more extreme, deleterious gamma distribution of mutational input
(b¼ 2.13, mean s ¼ �0.161, h¼ 0.3), similar to that of the inferred DFE
from the empirical data. Larger values of �Nes are more deleterious;
simulation census size N¼ 500,000; selfing rate 99.9%; SFS are averaged
over generations 4N, 4.5N, and 5N. All estimated parameters of the
inferred DFE are listed in Supplementary Table S2. Error bars indicate
95% confidence intervals.
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simulations that differed only in reproductive mode: 99.9% self-
ing (Figure 2) vs 100% outcrossing (Figure 3). We found that the
inferred DFE much more accurately matches the known input
DFE for the simulations under a regime of full outcrossing
(Figure 3) as opposed to high selfing. Both the mixture gamma
DFE and the extreme DFE that we simulated matched well to the
input mutational spectra under a regime of pure outcrossing,
compared to the extremely poor match to the mixture DFE for
highly selfing populations (Figure 2 cf. Figure 3). Nevertheless,
the gene dense and low recombining chromosome centers exhib-
ited an inferred DFE shifted toward weaker fitness effects even in
these purely outcrossing simulations. DFE-alpha’s demographic
estimation algorithm also struggled with the low-recombination
chromosome centers. The N2 coefficient, representing the popu-
lation size in the second epoch of a two-epoch demographic
model (not to be confused with the N2 strain of C. elegans),
reached its maximum allowed value of 1000 for the chromosome
centers (Supplementary Table S2). Despite the simulations
modeling a stable population, the N2 coefficient for arm regions
implicated a demographic correction for an approximate fourfold
population expansion (Supplementary Table S2). These observa-
tions indicate that DFE-alpha is able to subsume the expansion-
mimicking effects of linked selection within the N2 coefficient for
high recombination arm regions but does less well for low recom-
bination center regions, even in the case of pure outcrossing.

To explore how extreme the amount of selfing must be in or-
der to compromise the ability of DFE-alpha to infer the DFE, we
conducted further simulations using selfing rates of 98, 90, 80,
and 50%. Under 98% selfing, the DFE inferred by DFE-alpha was

still as poorly inferred as our results for 99.9% selfing, particularly
for the mixture gamma DFE (Figure 4, top panels). With a less ex-
treme selfing rate of 90% selfing or below, we found the DFE in-
ference to approach the true input distribution, albeit with a bias
toward overestimating the incidence of weak-effect mutations
(Figure 4). The severity of mis-inference also clearly is sensitive
to the underlying simulated DFE, with more accurate inferences
for the more extreme simulated DFE (Figure 4).

We hypothesized that a subset of C. elegans strains might con-
tribute to a perturbed DFE because they are hypothesized to have
experienced selective sweeps that impacted large portions of the
genome (Andersen et al. 2012). Whether or not strains show evi-
dence of chromosome-scale selective sweeps also forms the pri-
mary axis of genetic structure for this global sample of C. elegans
(Andersen et al. 2012; Lee et al. 2021), so partitioning our analysis
for “swept” and nonswept “divergent” strain sets separately also
allows us to explore the potential influence of population genetic
structure within the full sample. When we compared the DFE in-
ferred using data from the 273 “swept” strain subset to the DFE
inferred using data from the 52 nonswept “divergent” strain sub-
set, we did not observe a drastic difference in DFE shapes for the
whole genome analyses (Figure 5). Qualitatively, both subsets of
the data showed the largest proportion of deleterious mutations
in the strongest selection class and the second most abundant
mutations to be in the weakest selection class (Figure 5). For
chromosome centers, however, the swept strain subset showed a
less strongly “U-shaped” distribution, instead having the second
most weight for intermediate effect deleterious mutations (�Nes ¼
10–100; Figure 5B). Using the SFSs that included sites specified
by SNPeff further exacerbated the DFE shift toward weaker fitness
effects in chromosome centers for swept strains (Figure 5, C and
D). This pattern of weaker mutational effects inferred for the
strains and genomic regions most impacted by selective sweeps
suggests that linked selection influences the DFE inference.

We also hypothesized that the presence or absence of benefi-
cial mutational input might complicate inference of the DFE in
the context of selfing-induced homozygosity and linked selection
because DFE-alpha only infers the DFE for deleterious mutations.
Therefore, we tested whether the inclusion or exclusion of benefi-
cial mutations in the simulations impacted the inferred DFE un-
der high selfing. We observed that the presence of beneficial
mutations most strongly influenced the fraction of mutations in
the weak and intermediate fitness effect classes (�Nes ¼ 0–1 and
1–10), shifting the inferred DFE toward a greater density of weakly
deleterious effects relative to simulations that lacked any benefi-
cial mutations (Figure 6). The pattern for chromosome centers
contrasted with chromosome arms and the whole genome when
only deleterious mutations were present, exhibiting a more even
distribution across all greater deleterious effect classes but still
retaining a large proportion of mutations in the nearly neutral
class (Figure 6B). Finally, we tested whether DFE inferences using
the unfolded SFS might better match the expected DFE but found
no clear improvement relative to the performance of DFE-alpha
using the folded SFS (Supplementary Figure S1).

Discussion
Population genomic data, in principle, provide a rich collection of
allelic variation from which to infer the DFE for mutational input
into populations. Accurate estimation of the DFE from such data
can be complicated by population demography that differs from
equilibrium, due to growth or decline in population size, although
methods implemented in inference algorithms attempt to
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Figure 3 DFE inferences from simulations of fully outcrossing
individuals. Genetic properties are otherwise equivalent to the selfing
simulations shown in Figure 2, but with census size N¼ 50,000 instead
of 500,000 (hence the difference in expectation of the gray bars from
Figure 2). Panel (A) shows results of simulations using the mixture
gamma distribution while panel (B) corresponds to simulations of an
input DFE that includes greater incidence of highly deleterious
mutations. SFS are averaged over generations 4N, 4.5N, and 5N. All
estimated parameters of the inferred DFE are listed in Supplementary
Table S2. Error bars indicate 95% confidence intervals.
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minimize such demographic biases (Keightley and Eyre-Walker
2007; Boyko et al. 2008; Tataru et al. 2017). The influence of non-
random mating on DFE inference, however, remains incom-
pletely understood. Our exploration of the DFE for deleterious
mutations in C. elegans, using genome sequences for 326 wild iso-
lates combined with biologically motivated simulations, demon-
strated that extreme self-fertilization can compromise accurate
inference of the DFE.

Based on naive application of DFE-alpha to infer C. elegans’
DFE, one would conclude that mutational effects exert predomi-
nantly strong deleterious consequences on fitness. However, we
showed that, when simulating conditions that mimic C. elegans’
genome architecture and its extreme 99.9% selfing mode of re-
production, the same inference algorithm does not always re-
cover the input DFE. This discrepancy is not a general problem
with the method, as simulations under random mating do suc-
cessfully recover the input DFE. This contrast highlights the bias
that a highly selfing mating regime coupled with linked selection
can cause for inferred DFEs.

Demographic model-fitting plays an important role in infer-
ring the DFE, as s is scaled by Ne. And yet, as we saw in many
cases, estimates of the N2 parameter that aims to capture the ef-
fective population size in the current population were often
capped at the maximum rescaling allowed by the method, espe-
cially in low-recombination chromosome centers (see diverged
strains in Table 2). One interpretation of these capped N2 param-
eter values is that accurate estimation of the other model param-
eters cannot be assumed to be reliable, as we observe in
mismatches between simulated input and estimated DFEs. This
capping of the N2 parameter at its maximum value even emerged
in simulations of demographic stability in purely outcrossing
populations for the low-recombination chromosome center
regions, despite settling on an intermediate value for high-
recombination arm regions (Supplementary Table S2). With em-
pirical data, one might interpret such values of N2 as represent-
ing a large population expansion, but our simulations modeled
populations of constant size. We can therefore conclude that the
N2 demographic parameter of DFE-alpha can serve to account
for the biasing effects of linked selection, but does so successfully

only when linked selection is not too strong or recombination is
not too restricted.

Previous results, using an alternative inference method, indi-
cated that a scaled additive model could be applied for the case
of 97% selfing in Arabidopsis (Huber et al. 2018). Similarly, work in
self-compatible Eichhornia plants found that the DFE could be re-
covered adequately with 98% selfing (Arunkumar et al. 2015).
These findings further imply that accurate DFE inference under
selfing may be sensitive to genomic and evolutionary parameters
(e.g., genome size and architecture of selected sites, recombina-
tion and mutation rates, and the DFE itself, including beneficial
mutations). We observed that the shape of the underlying DFE, in
particular, strongly impacts our ability to correctly infer it under
selfing, suggesting that our mixture gamma distribution used in
combination with regions of lower recombination poses espe-
cially difficult conditions for DFE-alpha. Both of the studies in
plants benefited from calibrating their analysis of selfing popula-
tions with a close outgroup that is fully outcrossing. Although
C. elegans lacks a known outgroup that would be appropriate to
use in this way, future analysis of the DFE for the selfing
Caenorhabditis briggsae in combination with its close outcrossing
relative Caenorhabditis nigoni is promising for this comparative
approach.

Our simulations show that the extreme selfing of species like
C. elegans interacts with the shape of the DFE such that some dis-
tributions show a greater disparity between the DFE input by mu-
tation and the output DFE inferred from polymorphism. This
discrepancy depends on at least two factors: the nature of the un-
derlying DFE (weighted toward more strongly negative effects vs
weighted toward more nearly neutral effects), and linkage be-
tween beneficial and deleterious variants. Dominance plays little
role in the evolutionary fate of mutations in highly selfing popu-
lations, because new mutations become homozygous after only a
few generations. As a consequence, selfing is thought to more ef-
fectively purge recessive large-effect mutations as compared to
nearly additive weak-effect mutations (Charlesworth and
Charlesworth 1998). This differential purging might induce the
DFE inferred from polymorphism data to show an abundance of
variants with nearly neutral deleterious effects, as we have seen
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Figure 4 DFE inference from simulated datasets across a range of self-fertilization rates shows strong influence of selfing rate and distribution of
mutational effects. Top row results (A, C, E, G, and I) show DFE inferred with DFE-alpha from simulations using the mixture gamma distribution. Bottom
row results (B, D, F, H, and J) show DFE inferences from simulations using the extreme gamma distribution. Panels show increasing selfing rate left to
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Figure 2, and Figure 3, except N¼50,000 instead of 500,000. Error bars are 95% confidence intervals.
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for our simulations of high selfing leading to poor recovery of the
underlying DFE when that underlying distribution contained
mutations over a wide range of effects (Figure 2A). Only under a
simulated DFE where the vast majority of mutations entering the
population are highly deleterious does the DFE inference appro-
priately recover the underlying distribution (Figure 2B), likely
because few or no weakly deleterious mutations are segregating
in the population at all. Indeed, our selfing simulations and
C. elegans analysis both show high densities of mutations in ei-
ther the highest or the lowest deleterious fitness class of mutations
and few mutations of intermediate effect (Figures 1 and 2).

The effect of linkage between selected variants on the DFE in-
ference is detectable from both our empirical and simulation
datasets. Comparison of our “swept” vs “divergent” empirical
data subsets reveal a pattern of weaker mutational effects in-
ferred for the strains and genomic regions most impacted by se-
lective sweeps (i.e., chromosome centers in swept strains).
Considering chromosome arm and center regions separately also
reflects the stark difference in recombination rate and gene density
found between these regions in the C. elegans genome (C. elegans
Sequencing Consortium 1998; Cutter et al. 2009; Rockman and
Kruglyak 2009). This chromosomal heterogeneity leads to profound
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effects of linked selection in chromosome centers (Cutter and
Payseur 2003; Andersen et al. 2012; Crombie et al. 2019), which we
hypothesized might influence DFE inference. Indeed, we found that
the inferred DFE tended to shift toward weaker-effect mutations in
chromosome centers. To some extent, this effect was apparent

even in simulated genomes with full outcrossing. However, we ob-
served the most substantial differences between arm and center
regions in our analysis of the subset of C. elegans data from strains
that show selective sweeps that span nearly two-thirds of the ge-
nome. DFE-alpha can therefore account for modest perturbations
due to linked selection within its demographic correction by ap-
proximating this influence as a reduction in effective population
size (Keightley and Eyre-Walker 2007). The magnitude of effects
from linked selection in C. elegans (Cutter and Payseur 2003;
Andersen et al. 2012; Thomas et al. 2015), however, appear too ex-
treme to be adequately accounted in this way.

Furthermore, inclusion or exclusion of beneficial mutations in
our simulations also greatly impacted the inferred DFE. The dis-
tribution inferred in all of our scenarios by DFE-alpha is that of
deleterious mutations only, yet for the same input deleterious
DFE, we can observe different inferences based on the presence
or absence of beneficial mutations entering the population. In
the presence of linkage between deleterious and beneficial var-
iants, the inferred DFE for deleterious mutational effects is
shifted to a more weakly deleterious distribution overall
(Figure 6A cf. Figure 6B). The difference in inference between
simulated arms and centers of the genome also clearly shows
this pattern of a greater weight for weakly deleterious mutations
in the lower-recombining regions of the chromosome centers.

We conclude that the disparities between mutational input
and the DFE inferred from site frequency spectra are caused by
linked selection that is exacerbated by selfing. The consequences
of linked selection are even further exacerbated by C. elegans’ ge-
nome structure with gene-dense and low recombination chromo-
some centers. The impact of linked selection on the DFE
inference is not due to underlying mutational differences along
chromosomes, as centers and arms did not differ in selective
effects of mutations in our simulations. The correction for demo-
graphic change implemented in DFE-alpha does not seem able to
accommodate the degree of linked selection resulting from the
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Figure 6 The DFE inferred from simulations with both deleterious and
beneficial mutations (A, as in Figure 2A), or with deleterious mutations
only (B). Simulation parameters as in Figure 2. SFS are averaged over
generations 4N, 4.5N, and 5N. All estimated parameters of the inferred
DFE are listed in Supplementary Table S2. Error bars indicate 95%
confidence intervals.

Table 2 Inferred parameters of the DFE for the empirical C. elegans dataset using DFE-alpha

Dataset Genome
portion

SNP set Population
size

after first
epoch, in

2-epoch mode
(N2, relative
to N1¼100)

Duration of
epoch after

first
population

size change (t2)

Weighted recent
effective population

size (Nw, Eyre-
Walker

and Keightley 2009)

Mean
selection

coefficient
(Es)

Shape
parameter

(b)

Empirical full
strain set

Whole 4-0-fold 1000 299.23 225.06 �40.42 0.17
Arms 1000 245.70 204.04 �124.88 0.16
Centers 1000 298.62 224.83 �22.36 0.15
Whole 4-0-fold, high-moderate 1000 299.23 225.06 �6.80 0.17
Arms 1000 245.70 204.04 �20.83 0.16
Centers 1000 298.62 224.83 �2.95 0.15

Empirical
swept strain
set

Whole 4-0-fold 1000 679.00 359.09 �6.63 0.20
Arms 1000 628.18 342.59 �197.65 0.14
Centers 1000 501.51 299.61 �0.72 0.26
Whole 4-0-fold, high-moderate 1000 679.00 359.09 �1.45 0.20
Arms 1000 628.18 342.59 �29.71 0.13
Centers 1000 501.51 299.61 �0.18 0.28

Empirical
diverged
strain set

Whole 4-0-fold 307 140.07 142.22 �546.09 0.13
Arms 372 143.18 147.62 �321.05 0.15
Centers 1000 1814.82 636.79 �16.75 0.14
Whole 4-0-fold, high-moderate 307 140.07 142.22 �71.53 0.13
Arms 372 143.18 147.62 �50.33 0.15
Centers 1000 1814.82 636.79 �2.37 0.13

The mean selection coefficient (Es) is not scaled by effective population size (i.e., not Nes). Mean (absolute) selection coefficients greater than 1 reflect the long tail of
a leptokurtic gamma distribution. See Keightley and Eyre-Walker (2007) for explanation and further interpretation. Note that the DFE-alpha approach caps N2 at
1000, reflecting the poor ability to estimate the DFE in these cases due to poor fit during the rescaling.
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extreme selfing experienced by C. elegans, since this correction

only modulates the effective population size in an attempt to ac-

commodate the presence of nonstandard population conditions.

The high values of the N2 parameter (the effective population

size during the second epoch estimated by DFE-alpha and used

for scaling the selection coefficient; see Table 2), capped at 1000

estimated during the DFE inference, may reflect this poor fit to

the demographic model due to selfing and linked selection and

thus the poor inferences of the DFE. Such an inability to fully ac-

count for the effects of strong linked selection conforms with the

fact that the influence of selection on a genomic region is imper-

fectly approximated by a scaled effective population size (Kaiser

and Charlesworth 2009; Neher 2013). Similar to Messer and

Petrov (2013), we find that this bias causes genomic regions most

impacted by linked selection to show an inferred DFE of weaker

fitness effects. This problem is likely to be especially acute for

populations that experience high rates of selfing.
As we strive to understand more about the role of deleterious

mutations in evolution and the prevalence and distribution of

their fitness effects, inferring the DFE in well-characterized

model systems are an essential first step toward a comprehen-

sive understanding of the mutational process and the impacts of

selection, demography, and genomic architecture on the fate of

new mutations. We emphasize the difficulties that can be en-

countered when applying existing methods for inferring the DFE

to nonstandard population conditions, in particular for the ex-

treme of nonrandom mating reflected by the high selfing of C. ele-

gans. This challenge highlights the need for integration of

empirical and theoretical approaches, and new methods, to ac-

count for perturbing effects of linked selection and nonrandom

mating to generate a fuller understanding of the mutational pro-

cesses that underlie the evolution of populations in the wild.

Data availability
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