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Abstract

We measured the floral bud transcriptome of 151 fully sequenced lines of Mimulus guttatus from one natural population. Thousands of sin-
gle nucleotide polymorphisms (SNPs) are implicated as transcription regulators, but there is a striking difference in the allele frequency
spectrum of cis-acting and trans-acting mutations. Cis-SNPs have intermediate frequencies (consistent with balancing selection) while
trans-SNPs exhibit a rare-alleles model (consistent with purifying selection). This pattern only becomes clear when transcript variation is
normalized on a gene-to-gene basis. If a global normalization is applied, as is typically in RNAseq experiments, asymmetric transcript distri-
butions combined with “rarity disequilibrium” produce a superabundance of false positives for trans-acting SNPs. To explore the cause of
purifying selection on trans-acting mutations, we identified gene expression modules as sets of coexpressed genes. The extent to which
trans-acting mutations influence modules is a strong predictor of allele frequency. Mutations altering expression of genes with high
“connectedness” (those that are highly predictive of the representative module expression value) have the lowest allele frequency. The
expression modules can also predict whole-plant traits such as flower size. We find that a substantial portion of the genetic (co)variance
among traits can be described as an emergent property of genetic effects on expression modules.
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Introduction
Genetically controlled gene expression variation is prevalent
within and between species, across different tissues, environ-
ments, and treatment contexts (Harding et al. 1989; Whitehead
and Crawford 2006; McManus et al. 2010; Meiklejohn et al. 2014;
Signor and Nuzhdin 2018). Changes in gene expression can facili-
tate divergence between species (Johnson and Porter 2000;
Tulchinsky et al. 2014; Mack and Nachman 2017; McGirr and
Martin 2020) and provide a mechanism for a population to rap-
idly adapt to a new environment (Morris et al. 2014; Ghalambor
et al. 2015; Campbell-Staton et al. 2017; Margres et al. 2017; Mack
et al. 2018; Hamann et al. 2021). Standing genetic variation and
plasticity in gene expression can buffer a population against envi-
ronmental fluctuations (Podrabsky and Somero 2004; Stern et al.
2007; Acar et al. 2008; López-Maury et al. 2008). While much has
been learned about the regulation of particular genes, genome-
wide patterns in the evolutionary dynamics of gene expression
are just beginning to be explored (e.g., Josephs et al. 2020). It also
remains unclear how gene expression, as a molecular phenotype,
might mediate the genetic underpinnings of quantitative trait
variation, and ultimately fitness.

Evolutionary dynamics of transcriptional
effectors
Mutations can alter gene expression in many ways, and we ex-
pect selection to act differently on different types of variants
(Lawrence et al. 2016; Bewick and Schmitz 2017; Duren et al. 2017).
Gene expression can be affected by mutations acting either in cis
or in trans. Cis-acting variants affect a closely linked gene directly,
perhaps by altering sequences normally bound by transcription
factors or other regulatory machinery. In contrast, trans-acting
regulatory variants change the cellular environment in which
transcription happens, say by altering diffusible products like the
transcription factors themselves (Wittkopp et al. 2004; Emerson
and Li 2010).

Natural selection could differ systematically between cis- and
trans-acting variants for several reasons. First, the mutational target
for trans-acting effectors of a gene could be a substantial fraction of
the genome (Boyle et al. 2017) while a more limited set of sites are
available for cis-acting mutations (Gruber et al. 2012; Metzger et al.
2016). Second, trans-acting variants have the potential to affect mul-
tiple genes and may thus have negative consequences on finely
tuned pathways (Stern and Orgogozo 2008; but see Hoekstra and
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Coyne 2007). If trans-mutations have opposing pleiotropic effects on
many genes (antagonism), they may still increase in frequency in a
conditional manner (Hall et al. 2010; Anderson et al. 2011). Third, if a
trans-acting variant with weakly deleterious effects on the expres-
sion of one or more target genes increases substantially in fre-
quency (due to drift or selection), cis-variants specific to each
affected gene might then act as a buffer, leading to positive direc-
tional selection on cis-compensatory mutations. This often occurs,
for example, with pleiotropic mutations associated with antibiotic
resistance (Maisnier-Patin and Andersson 2004; Brandis et al. 2012)
and compensatory pairs of cis- and trans-effectors have been docu-
mented in several systems (Coolon et al. 2014; Wang et al. 2015; Fear
et al. 2016; Mack et al. 2016; Verta et al. 2016; Metzger et al. 2017).
These theories generally suggest that trans-acting variants should
be under stronger negative selection than cis-acting variants based
on the premise that gene expression should usually experience
strong stabilizing selection (Denver et al. 2005; Rifkin et al. 2005;
Whitehead and Crawford 2006; Hodgins-Davis et al. 2015). If this is
correct, then any mutation with broad effects on expression, re-
gardless of cis- or trans-effect, will more likely be deleterious, per-
haps through cascading effects on connected pathways or networks
(Fisher 1930).

Broad patterns of selection can be inferred from the allele fre-
quency spectrum (AFS) of cis- and trans-acting variants. When
compared with the neutral expectation, an excess of intermedi-
ate frequency variants suggests balancing selection while an ex-
cess of rare variants suggests purifying selection (Tajima 1989).
Demographic events, such as population expansions or contrac-
tions, can perturb the AFS away from the neutral expectation
(Hartl and Clark 1997). However, since demographic effects are
genome-wide, we can make inferences about selection by com-
paring the AFS for a particular class of polymorphism (e.g., cis-
effectors of gene expression) to that of the entire genome. Of
course, this is just a first step; inferences about selection require
corroboration from multiple lines of evidence (Beaumont and
Balding 2004; Bigham et al. 2010). In this study, we find an AFS
consistent with purifying selection for trans-acting expression
variants and corroborate this pattern by showing that the skew
toward extreme allele frequencies is greatest at loci with the
broadest effects on expression. In contrast, cis-acting single nu-
cleotide polymorphism (SNPs) exhibit an AFS suggesting balanc-
ing selection. The processes most likely to generate balancing
selection on cis-SNPs depend on the specific ways that these
mutations affect whole organism phenotypes, and also on the
complicated and variable mapping from phenotype to fitness in
nature.

Transcriptional mutations generating genetic
(co)variation in traits
How important are transcriptional regulators in modifying
fitness-related traits? Case studies of specific genes with known
mutant phenotypes provide many examples where gene expres-
sion influences fitness relevant traits of plants (Streisfeld and
Rausher 2009; Sobel and Streisfeld 2013; Ning et al. 2017;
Kremling et al. 2018; Alonge et al. 2020). The quantitative impor-
tance of transcriptional mutations relative to those that effect
enzymatic or structural protein function remains a point of con-
tention (Hoekstra and Coyne 2007; Stern and Orgogozo 2008), but
a steady increase of evidence from human eQTL/eGWAS research
suggests a predominant role for gene expression variation in gen-
erating quantitative trait variation (Nicolae et al. 2010; Maurano
et al. 2012; Torres et al. 2014; Farh et al. 2015; Boyle et al. 2017). As
a first step to understanding the relationships between

mutations affecting transcription, quantitative trait variation,
and fitness, we here use observed gene expression variation to
predict variation and covariation among a set of quantitative
traits. These traits correlate with field fitness components in yel-
low monkeyflower (Mimulus guttatus) and were previously ana-
lyzed as part of a GWAS that predicted trait and fitness measures
directly from SNPs (Troth et al. 2018).

In this study, we associate SNPs segregating within inbred
lines derived from the Iron Mountain (IM) population with gene
expression variation in flower buds. Allele frequencies in the in-
bred lines accurately represent those in the natural population
(Troth et al. 2018). We first document strikingly different patterns
of apparent selection from the AFS of cis- and trans-acting regula-
tory SNPs. We then show that modules of coexpressed genes pre-
dict the trait means of the inbred lines, despite that we measured
gene expression and traits on different plants grown in different
places. The stability of the relationship between transcriptome
and trait is surprising, given the frequently cited “noisiness” of
transcriptome data (Arias and Hayward 2006; Raj and van
Oudenaarden 2008). Finally, we demonstrate that correlations,
including tradeoffs between fitness-related traits can be pre-
dicted from gene expression variation.

Methods
Study system
We used randomly derived inbred lines of the yellow monkey-
flower, M. guttatus (syn Erythranthe guttata, Phrymaceae) from the
IM population in the Cascade Mountains of Oregon (Willis 1999;
Kelly 2003; 44.402217N, 122.153317W). This population is pre-
dominantly outcrossing with little internal population structure
(Willis 1993; Sweigart et al. 1999). Due to its annual/winter annual
lifespan and short growing season, the IM population experiences
a fitness tradeoff caused by variation in flower size and life-
history phenotypes (Mojica et al. 2012). In 2018, Troth et al. se-
quenced whole genomes of 187 IM inbred lines and phenotyped
them for 13 flower size and developmental timing traits known
to influence fitness in the field.

RNAseq
We grew plants from 151 of the genome-sequenced inbred lines
in the University of Kansas greenhouse under standard condi-
tions (Monnahan and Kelly 2015) in three different cohorts. For
each cohort, we grew more plants than needed for tissue collec-
tion and randomly selected plants for sampling soon after germi-
nation. We chose a recognizable and consistent stage at which to
collect tissue, which we call the late floral bud stage. These are
unopened flower buds (approximately 2–6 mm in length) on the
first flowering node (so the corolla is presumably not fully ex-
panded), but are advanced enough that buds on the second flow-
ering node are visible. We chose bud tissue to enrich for
transcripts related to flower size. When beginning the first co-
hort, it was unclear if this tissue type/amount would yield
enough RNA for adequate sequencing. We thus pooled bud tissue
from three plants of the same line in each tube prior to RNA ex-
traction. Biological replicates were then multiple tubes of pooled
tissue, all from the same line. Pooling was done randomly with
regard to flowering time (i.e., if six plants per line were se-
quenced, three in each of two tubes, one tube was not all three
earliest flowering plants). This process was not repeated in
cohorts 2 and 3, for which one to three biological replicates
(plants) of each line were collected and sequenced separately. We
collected tissue into liquid nitrogen at the same time of day (with
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regard to both actual time and hours after greenhouse lights turn
on) within a 2-h window that was consistent between cohorts.

We ground the collected tissue finely with a plastic micropes-
tle and extracted RNA using the Qiagen RNeasy Plant Mini Kit
(Hilden, Germany). We generated sequencing libraries using the
QuantSeq 3’mRNA-Seq Library Prep Kit for Illumina (Lexogen,
Vienna, Austria) per protocol, modified to perform half reactions,
and we sequenced the libraries using NextSeq HO-SR75bp
(Illumina, San Diego, CA, USA) at the University of Kansas
Genome Sequencing Core. Each cohort was sequenced separately
with a maximum of 96 samples per flow cell (a total of 4 flow
cells and 281 individual samples).

To calculate read counts, we implemented the programs in
Lexogen’s BlueBee pipeline. First, we trimmed reads with bbduk
(k¼ 13, ktrim¼ r, useshortkmers¼ t, mink¼ 5, qtrim¼ r, trimq¼ 10,
minlength¼ 20) from BBTools 38.86 (Bushnell 2014) and aligned
reads to the M. guttatus V2.0 reference genome (Phytozome;
Hellsten et al. 2013) with STAR 2.5.0a (Dobin et al. 2013) using
Lexogen’s recommended parameters (outFilterMultimapNmax 20,
alignSJoverhangMin 8, alignSJDBoverhangMin 1, outFilterMismatch
Nmax 999, outFilterMismatchNoverLmax 0.1, alignIntronMin 20,
alignIntronMax 1000000, alignMatesGapMax 1000000). Finally, we
counted transcript copies using htseq-count 0.11.2 and the genome
annotation (Anders et al. 2015). The output is a table of read counts
for each transcript. We then removed five samples that had fewer
than 250k mapped reads (mean for remaining samples of 3,877,524
mapped reads) and normalized the counts for each sample (to ac-
count for variable library quality and sequencing depth) using the
estimateSizeFactors function in DESeq2 1.28.1 (Love et al. 2014).

Predicting transcript levels from SNPs
Across all samples, 28,615 of 33,573 total annotated transcripts
had at least one mapped read. We kept each gene isoform as a
separate transcript. We first filtered out any transcripts which
had mapped reads in fewer than 5% of samples, and which did
not have 10 or more mapped reads in at least one sample. This
left 20,463 transcripts for association mapping. The vast majority
of genes (19,721 out of 20,463) had only one isoform with mapped
reads. To account for the effect of cohort, we fit a linear model
using lm in base R (R Core Team 2013) to each transcript with co-
hort as a categorical predictor and then subtracted the estimated
effect from each read count. We then transformed each tran-
script’s expression in each sample by two methods: (1) log(ex-
pression þ 1) and (2) Box–Cox transformation (Box and Cox 1964)
using the boxcox() function in the R package EnvStats 2.3.1 with a
range for k between �5 and 5 (Millard 2014). Because some counts
were negative after factoring out the effect of cohort, we shifted
the distributions of all gene counts such that the minimum value
was 0 for both types of transformation. Additionally, because
Box–Cox transformation cannot accommodate zeros, we added a
small value to each count that was equal to 10% of the minimum
difference between any two samples (such that the difference be-
tween that value and zero was essentially undetectable in the
original counts). Finally, we averaged every gene’s expression
across plants with each inbred line.

We obtained a filtered set of polymorphisms of the sequenced
lines by starting with sites called by Troth et al. (2018). We kept
only biallelic SNPs with a minor allele frequency (MAF) above
2.5% that were called in at least half of the sequenced lines. We
then pruned these sites for local LD using PLINK 1.90b3.38
(Purcell et al. 2007) with a window size of 50 SNPs, a step size of 10
SNPs, and an R2 threshold of 0.9. This left 2,952,894 SNPs for
downstream analysis. We performed the GWAS using GEMMA

0.98.1 (Zhou and Stephens 2014) by first constructing a centered
relatedness matrix using all filtered, but unpruned sites. Finally,
we used the univariate linear mixed model (�lmm) in GEMMA,
which in the case of no covariates takes the form: expression ¼
SNP genotype effect þ random effect of relatedness þ error. As
part of the model, GEMMA outputs the “chip heritability” for each
gene; an estimate of the proportion of transcription variation
that can be explained by all genetic causes. We used P-values
taken from the likelihood ratio test to find associations between
the levels of 20,463 transcripts and each of the 2,953,894 SNPs.

We classified the associations as cis-acting if the site was
within 25 kb of any part of the transcribed gene and trans-acting
otherwise. This distance-based approach for calling cis-effectors
can be undermined by long-distance LD. A physically distant SNP
(which we would classify as trans) might be associated with ex-
pression simply because it is in LD with a cis-acting SNP. For this
reason, we excluded data from the meiotic drive locus on chro-
mosome 11 (a known region of extended LD; Fishman and Willis
2005; Fishman and Saunders 2008; Fishman and Kelly 2015) from
genome-wide summaries. Overall, the sequenced lines from IM
show a rapid decay of LD as inter-SNP distances exceed 10 kb
(Puzey et al. 2017) which makes our 25 kb cutoff conservative. Cis-
and trans-acting mutations can be distinguished more directly
using allele-specific expression data (Wittkopp et al. 2004;
Springer and Stupar 2007; Tirosh et al. 2009; Shi et al. 2012; Osada
et al. 2017; Signor and Nuzhdin 2018), but only in heterozygous
individuals and here we are measuring expression in highly ho-
mozygous inbred lines.

To interpret our estimates for SNP effects on transcription, we
permuted the vector of gene expression data (all genes) against
line genotypes 100 times. For each replicate, we applied the
GEMMA �lmm for all cis-tests (all cases where an SNP was within
25 kb of a gene). Across permutation replicates, we obtained ca.
1.2 billion tests to relate SNP allele frequency to significance lev-
els under the null hypothesis of no SNP effect on expression (as
in Josephs et al. 2015).

We next performed simulations allowing SNP effects on gene
expression. As previously, we first permuted expression values
against genotypes. This simulates the “environmental variance”
in expression. We then added 2�b to all lines carrying the homo-
zygous alternate (nonreference) genotype, where the genotypic
effect (b) was determined separately for each gene. Given the
large number of lines in our panel, the variance in expression at-
tributable to SNP genotype, Vsnp, is

Vsnp ¼ 4 q 1� qð Þb2; (1)

where q is the frequency of the reference base in the line panel.
Based on results from our significant cis-effect tests (described
below), we set Vsnp ¼ Vresidual for the first set of simulations. In
other words, SNP explains half the variance in expression. We
calibrate the simulations with SNP effects in two different ways:
(1) We consider the case where the proportion of variance due to
SNP is held constant at 0.5.

This implies:

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vresidual

4qð1� qÞ

s
: (2)

Since all variation is environmental after permutation, Vresidual

is simply the variance of expression in the gene before adding
effects to genotypes. (2) We set Vsnp for each gene assuming that
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q¼ 0.5. This implies b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vresidual

p
. For this case, Vsnp obtained af-

ter adding genotypic effects will vary with q (and be lower for

SNPs with lower minor allele frequencies). These simulation

schemes were considered by Tung et al. (2015) in analyzing ex-

pression data, although these authors simulated the residual var-

iance from a normal distribution while we use permutation of

the observed expression levels. For both schemes, we performed

tests on a random selection of 20 of the cis-SNPs for each gene

with a distinct permutation of expression values vs line for each

test.

Predicting phenotypes from gene coexpression
modules
To identify sets of coexpressed genes, we used WGCNA 1.69 in R

(Langfelder and Horvath 2008) using the sample normalized and

cohort factored, but untransformed, counts as input with a

power of 3, max block size of 21,000, minimum module size of 30,

dynamic tree cut method, correlation using dissimilarity, and

merge cut height of 0.25. During coexpression analysis, one sam-

ple was removed as an outlier. WGCNA identified 37 modules of

coexpressed transcripts (Supplementary Table S1 and Figure S1).

Next, we extracted the line means for 13 traits from Troth et al.

(2018) for the 151 lines used in this study (germination date, days

to flower, corolla width, corolla length, floral tube length, throat

width, stigma length, anther length, height at flowering, first

flowering node, width of widest leaf, and the first two principal

components (PCs) calculated from all floral dimensions). To look

for associations between gene expression modules and measured

traits, we Box–Cox transformed each module’s eigen expression

value (which is the first PC of a PCA for expression of all member

genes in a module), as well as every trait and fit a linear model

(all in R, R Core Team 2013). We used the eigen gene expression

for each module as a predictor in a simple regression, as well as

fitting the multiple regression for each trait using all 37 modules

simultaneously. We also used the program stepAIC from the R

package MASS 7.3-52 (Venables and Ripley 2013) to choose a low-

est AIC (Akaike Information Criterion) regression model including

some but not all modules as predictors.
For each best-fit multiple regression model, we used permuta-

tion to test for significance. We treated the set of traits as one

block and the set of modules as another block and permuted

which line had which of each block. This preserved the correla-

tions between modules and between traits, but changed which

sets of trait values and module values went together. To elabo-

rate, imagine a line has a set of trait values X and module values

K, and another line has a set of trait values Y and module values

L. Then, a permuted data set might combine traits X with mod-

ules L and traits Y with modules K. This is referred to as

Permutation 1 in Results. We next used the coefficients from the

best-fit model to predict trait variances and covariances. For each

trait, we estimated the effect of each module included in the best

fit model from a multiple linear regression and constructed an

equation to predict trait value for each line:

Yjz
0 ¼ bþ

X
i
mijxiz; (3)

where Yjz
0

is the predicted value of trait j for line z, mij is the esti-

mated effect of module i on trait j, xiz is the eigen expression of

line z for module i, and the sum is taken over all modules in the

model. The covariance of predicted values for traits j and k is:

Cov Y
0

j ;Y
0

k

� �
¼ 1

n� 1

X
z

Yjz
0 � lj

� �
� Ykz

0 � lk

� �
; (4)

where lj is the mean of trait j, lk is the mean of trait k, and the
sum is taken over all n lines. Calculations were done using a cus-
tom python script (Supplementary File S1). We permuted traits
against module values for testing. For each permuted set, we
again found a best-fit model with a subset of gene expression
modules and asked how much trait covariation we could predict
(using the above method) to generate a distribution. We deter-
mined if the amount of trait covariation explained by the real
gene expression data, as represented by modules, was significant
using alpha levels calculated from the permuted distribution.

For each trait, we randomly sorted genes into modules with
the same number of genes, calculated the eigen gene expression
value (PC1) for each module for each line, Box–Cox transformed
the module eigenvalues, and then included them in multiple re-
gression. In each case, we fit two models, one with all permuted
modules and one with the stepAIC chosen set. We permuted the
module composition 1000 times to generate distributions of R2

for each trait. Reported P-values for Permutation 2 in Results are
calculated from those distributions.

Results
Genetic effects on transcription levels of
individual genes
The number of detected associations between genotype and ex-
pression, as well as the putative type of regulatory association
(cis vs trans), are contingent on how we transform transcript
counts. Before testing for genetic effects on gene expression, we
transformed expression read count data using two methods,
log(count þ 1) and Box–Cox with k estimated for each gene sepa-
rately. Using a rounded P-value cutoff of 1e�12 (Bonferroni ¼
8.27e�13), we identified 106,585 significant SNP/transcript associ-
ations using log(countsþ 1) transformed counts (10,087 cis associ-
ations and 96,498 trans, Figure 1A). Using Box–Cox transformed
counts, over 90% of the significant trans-effects evaporate and we
find only 8088 cis and 7685 trans associations (Figure 1B).

A careful inspection of the differences between the two meth-
ods indicates that the Box–Cox results are more reliable. With
log(countsþ 1) transformation, individual genes often have
skewed distributions with a small number of lines exhibiting
atypically high or low expression (Figure 1C; Supplementary
Figure S2). The few outlier lines with extreme expression will har-
bor the same minor (and in most cases very rare) allele at many
loci. In fact, the majority of the 96,498 trans-regulatory associa-
tions (Figure 1A) involve SNPs with an MAF between 2.5% and 5%
(Figure 2A). When unlinked but rare alleles occur together in the
same lines, LD is high owing to “rarity disequilibrium”
(Lappalainen et al. 2013; Houle and Márquez 2015). If those same
lines have extreme expression, all of the linked SNPs will show a
strong association with expression.

The Box–Cox transformation provides a scale adjustment spe-
cific to each gene. In transcripts with the largest number of ge-
netic associations in the log(countsþ 1) analysis, Box–Cox more
completely “normalizes” expression reducing the effect of out-
liers (Figure 1, C and D; Supplementary Figure S2). Estimates
from the Box–Cox are less affected by the pull of extreme values
and we will subsequently limit attention to these tests. The mean
estimated heritability of gene expression was 0.31 (see
Supplementary Figure S3 for the full distribution). For genome-
wide analyses, we removed SNPs on chromosome 11 because the
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Figure 1 Genome-wide associations of gene expression. Above: transcript levels were normalized using (A) log(countþ 1) or (B) Box–Cox. Associations
are designated as cis (pink) or trans (blue). Chromosomes are numbered along both axes. Points are larger in (B) to aid visualization. The putative
misassembly is indicated with a red asterisk. The three genes with the most trans-associations are indicated with blue asterisks. Distributions of read
counts for a representative gene, Migut.D00004, which had 3665 SNP associations with Log(countsþ 1) transformation (C), but none with Box–Cox
transformation (D).

Figure 2 (A) Minor allele frequency distribution for all associations excepting Chromosome 11. (B) The subset of associations in the top quartile of effect
sizes for each regulatory category. Cis-acting variants in pink and trans-acting variants in blue. Lowest MAF bin is 0.025< x< 0.035.
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large block of apparent trans-effects on chromosome 11 are
within the meiotic drive locus (Fishman and Willis 2005; Fishman
and Saunders 2008; Fishman and Kelly 2015). The Drive allele is
essentially a single DNA sequence over >5 Mb of DNA segregating
in the inbred lines at �30%. As a consequence, it is impossible to
distinguish trans-acting SNPs from those that are simply in link-
age disequilibrium with cis-acting SNPs. This leaves 7832 cis and
4626 trans associations.

SNPs with significant cis-effects explain between 26% and 74%
of the total variance in expression of a gene (Supplementary
Table S2). Significant trans-effectors have a larger average effect
size than cis-SNPs (cis¼ 0.54, trans¼ 1.16, F-value ¼ 9.07, P-value
¼ 2.6e�3), and effect size is negatively correlated with MAF (both
log-transformed; estimated effect of cis-SNP effect size on MAF ¼
�0.029, t ¼ �8.347, P< 2e�16; estimated effect of trans-SNP effect
size on MAF ¼ �0.025, t ¼ �4.351, P¼ 1.39e�05; Supplementary
Figure S4). Since we find trans-acting SNPs have a distribution
skewed toward low frequency, it follows that such mutations
would also have larger effect sizes, as has been reported in other
systems (Josephs et al. 2020).

Across the genome, the distribution of MAF differs greatly be-
tween cis- and trans-acting mutations (Figure 2A). We find many
rare alleles responsible for trans-regulatory effects on gene ex-
pression, and an increasing number of cis effects at higher MAF.
We find a mean MAF for cis and trans associations of 0.342 and
0.215, respectively (F-value ¼ 2197, P-value < 2.2e�16). The MAF
distributions for cis- and trans-acting sites are both different from
the MAF distribution of the entire genome (Supplementary Figure
S5, two-sample Kolmogorov–Smirnov tests: cis-to-all comparison:
D¼ 0.51866, P< 2.2e�16, trans-to-all comparison: D¼ 0.1661,
P< 2.2e�16), and are different from each other (D¼ 0.43651,
P< 2.2e�16). The difference in MAF could be due to differential
power to detect cis- vs trans-acting loci with different effect sizes,
since we found larger effect sizes for trans effectors. To test
whether differences in effect size were driving the MAF pattern,
we took only the top quartile of effect sizes (after normalizing by
mean expression level) in each regulatory class. The pattern
remains the same (Figure 2B)—an excess of common cis-acting
alleles and an excess of rare trans-acting alleles. Finally, we
established that the pattern is insensitive to our distance cutoff
(25 kb) for trans-effectors. If we limit trans to SNPs that affect ex-
pression on different chromosomes (Supplementary Figure S6),
the cis/trans difference remains.

Permutation tests indicated that our significance threshold for
cis-tests is quite stringent. Across 100 whole genome permuta-
tions, only three of out of 1.2 billion SNP tests passed our
P< 10�12 threshold (Supplementary Table S3A). Following
Josephs et al. (2015), we considered significance levels across al-
lele frequency categories of SNPs to establish a null distribution
for the AFS of tests. For a given MAF, the fraction of tests that
yield P-values less than a specified threshold (say 10�5) are
reported in Supplementary Table S3A. Because permutation reit-
erates the null hypothesis, we expect the fraction to equal the
threshold, e.g., about one test in a million would have P< 10�6. In
fact, we find that tests on intermediate allele frequency SNPs (mi-
nor allele >20%) tend to be conservative (low P-values under-
represented) while rare-allele SNPs (minor allele <10%) tend to
be anticonservative. These results imply a pull toward more mi-
nor frequencies in the null distribution for AFS. However, it is
noteworthy that an extremely small number of tests approach
our actual threshold.

The simulations allowing SNP effects on expression routinely
yield significant results. The fraction of tests passing various

thresholds for our two simulation schemes (constant Vsnp and
constant b) are reported in Supplementary Table S3, B and C.
With Vsnp held constant (effect size varies with allele frequency),
about 90% of tests pass our P< 10�12 threshold regardless of al-
lele frequency. Essentially all tests pass for lower thresholds.
With fixed b (where the proportion of variance explained by an
SNP varies with AF), there is lower power for rare alleles than in-
termediate frequency SNPs, which is expected given that rare
alleles generate less variation. Most relevant to the results, we
consider the relative proportion of significant tests that fall into
each allele frequency class for each significance level, and how
this compares to the observed AFS of significant tests. This is
depicted for three thresholds in Figure 3. The AFS of significant
tests with Vsnp held constant is unaffected by threshold and
matches the AFS of all tested SNPs. With Vsnp constant, allele fre-
quency has no effect on ascertainment. With fixed b, a smaller
fraction of tests is significant for rare alleles (contrast orange to
gray bars in Figure 3). However, this skew toward intermediacy is
not sufficient to explain the data—the AFS of real tests is sub-
stantially more intermediate than predicted by ascertainment

Figure 3 The proportion of significant cis-tests from the real data (blue),
simulations with constant b (orange), and constant Vsnp (gray) are
reported for 10 AFS categories (minor allele q¼0.0–0.05, 0.05–0.1, etc.).
The panels indicate the proportions obtained by imposing different
significance thresholds to call significance.

6 | GENETICS, 2022, Vol. 220, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/220/1/iyab189/6427634 by guest on 10 April 2024

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab189#supplementary-data


with fixed b (contrast orange to blue bars) at all significance
thresholds.

We find no evidence for “trans-eQTL hotspots,” single SNPs af-
fecting many genes, similar to Populus tremula winter buds
(Mähler et al. 2017). In fact, there are more genes with transcript
levels that are affected by many trans-SNPs than SNPs with more
than two trans-associations (Supplementary Figure S7). The three
genes with the most trans-acting SNPs are Migut.D00926 (160
SNPs) annotated as a jasmonate ZIM domain-containing protein
(JAZ); Migut.M00568 (114 SNPs) annotated as a chlorophyll A/B
binding protein; and Migut.N01403 (105 SNPs) annotated as an
auxin-responsive F-box transport inhibitor response protein. For
genes M00568 and N01403, the trans-associations are concen-
trated on the same chromosome as the gene (Figure 1B). There is
an apparent association between the Chr11 Drive Locus and one
gene on chromosome 8 (Figure 1A). This gene (Migut.H01175) has
three putative homologs in the Mimulus genome, only one of
which was expressed in our samples (Migut.K01148). We found
that all of our samples had high expression for only one of the
two genes (Supplementary Figure S8), and low to no expression
for the other, which could indicate misassembly. Indeed, when
we mapped reads from two samples with expression of either
gene to the newer reference genome build (M. guttatus TOL v5.0,
DOE-JGI, http://phytozome.jgi.doe.gov/) they all mapped to the
same region on chromosome 11, which supports that
Migut.H01175 is a misassembled isoform of Migut.K01148. Finally,
the number of cis-associations for a gene is positively correlated
with gene size [effect estimate for log(number of associationsþ 1)
� log(gene length) ¼ 0.1797, t-value ¼ 6.04, P¼ 1.87e�9,
Supplementary Figure S9].

Rare-allele load refers to the proportion of segregating loci at
which an individual carries the minor allele, if the population fre-
quency of that allele is very low. It is similar to the concept of del-
eterious mutation load, but assumes nothing about the fitness
effect of individual rare alleles. Instead, it is usually used to test
whether or not there is a cumulative fitness effect of harboring
many rare variants. This load predicts dysregulation of gene ex-
pression in maize (Kremling et al. 2018) and the severity of in-
breeding depression in M. guttatus (Brown and Kelly 2020). We
tested whether lines with an excess of rare alleles exhibit differ-
ing patterns of expression, but found no correlation between load
and the number of genes showing extreme expression (plus/mi-
nus two standard deviations from the mean; Supplementary
Figure S10). We also find no clustering of lines by rare-allele load
in gene expression PC space (Supplementary Figure S11). The
many associations between gene expression and rare variants
suggested by Figure 1A (and by the MAF of associations removed
by Box–Cox transformation) is thus likely not a real cumulative
effect of many rare alleles generating extreme gene expression
genome-wide.

Construction of gene coexpression networks
We next sought to establish sets of genes that covary in expres-
sion across inbred lines. Using the cohort and individual normal-
ized gene expression counts, WGCNA identified 37 modules of
coexpressed transcripts. Each module includes between 37 and
5767 genes (mean 553, median 231) and each transcript (gene)
belongs to only one module (Supplementary Table S1 and Figure
S1). WGCNA groups genes with correlated expression and further
collapses groups such that gene expression between modules
should not be highly correlated (R2 > 0.8). However, eigengene ex-
pression (PC1 for the PCA of all genes in a module) of a few pairs

of modules remain moderately correlated (20 of 666 pairwise
comparisons with 0.74>R2> 0.5) (Supplementary Figure S12).

To determine if the apparent purifying selection on trans-
effecting sites (Figure 2A) is due to their impact on regulatory net-
works, we calculated the “connectedness” of each gene by corre-
lating the gene’s expression with the eigengene expression value
of its module. This measures how predictive a gene’s expression
is of the expression of all genes in the module. Note that we are
not calculating the number of edges a gene has in a regulatory or
interaction network, which is sometimes called connectivity.
Hence, the use of a nonstandard term. The distribution of corre-
lation coefficients (R2 with module PC1) is highly right-skewed
(Figure 4A). For this reason, we grouped genes by “connectedness”
quartile and then calculated the average MAF of sites affecting
each gene either in cis or in trans. We find a consistent difference
in MAF of cis- and trans-effectors, with trans having lower MAF,
especially in the highest quartile for “connectedness,” for which
MAF is significantly lower than in all other categories (effect esti-
mate for quartile 4 on trans-MAF ¼ �0.143, P¼ 1.53e�14, effect
estimate for quartile 4 on cis-MAF ¼ �0.022, P ¼ 0.00872)
(Figure 4B). We did not find enrichment for any GO terms in the
set of genes in connectedness quartile 4, using the closest
Arabidopsis thaliana putative homologs.

Predicting phenotypes from expression
We next tested whether floral bud gene expression affects quan-
titative traits (line means from Troth et al. 2018). We use modules
of coexpressed genes as predictors of phenotype because this
provides a tractable way to incorporate the whole transcriptome.
We used multiple linear regression including all 37 modules as
predictors of trait, and then chose the AIC-best model for each
trait. This selected model included from 6 (widest leaf) to 20
(flower size PC1) of the 37 total expression modules (Table 1).
Parameter estimates for the best-fit models, including effect sizes
for each included module, are reported in Supplementary Table
S4. The best-fitting model for each trait explained from 23% to
47% of trait variation, with the strongest prediction being for
overall flower size (PC1 in Table 1). To establish statistical signifi-
cance for prediction of trait variation, we permuted the data in
two ways.

Permutation 1
Does gene expression predict trait variation? To test the hypothe-
sis that a model using gene expression explains no more trait var-
iation than by chance, we permuted modules by line.
Correlations among traits and among modules were preserved
(see Methods), but randomly associated with each other across
lines. This tests whether the transcriptome (as collapsed into
coexpression modules) is a significant predictor of traits in a lin-
ear model. Using this method, trait variation predicted by the real
gene expression modules is highly significant (P < 0.01) for seven
of eight flower-size measurements (except flower size PC2), and
marginally significant (0.01< P < 0.05) for height and node
(Table 1). These nine traits are significantly correlated with each
other, except for throat width with node (Figure 5;
Supplementary Table S5).

Permutation 2
Do gene coexpression modules better predict traits than random
groups of genes? The significant prediction of traits by modules
does not imply that modules are necessarily the best summary of
gene expression for trait prediction. In order to test the hypothe-
sis that the predicted trait variation is just a function of including
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the whole transcriptome (by creating groups of genes as predic-
tors), we permuted module membership by shuffling genes into
random groups of the same size as the real modules. These
groups contain the same amount of information in terms of frac-
tion of transcriptome included, but eliminate clustering of genes
based on coexpression that defines the real modules. Essentially,
we are asking if coexpression networks are a better way of de-
creasing parameter space than grouping genes randomly when
the goal is to predicts trait values. By permuting gene module
membership, we find that only four traits (corolla width and
length, anther length, and flower size PC1) are significantly better
predicted by coexpression modules than by random assortment
of genes (Table 1). For all other traits, the amount of trait varia-
tion explained is attributable to the inclusion of the whole tran-
scriptome, not variation in coexpressed groups of genes.
However, while most traits are not significantly better predicted
by real modules than scrambled sets of genes, real modules bet-
ter predict traits than the average permuted data set for all but

four traits (days to flower, node, widest leaf, and flower size PC2).
Quantiles for the distribution of permuted R2 for both permuta-
tions are presented in Supplementary Table S6.

Overlapping sets of gene expression modules are included in
the best-fit model for the four traits where expression modules
are significant by both permutation tests (corolla width and
length, anther length, and flower size PC1). All four are signifi-
cantly predicted (in their own best-fit regression models) by 14
common modules. These traits are all positively correlated
(Figure 5). The 14 modules are not correlated (Supplementary
Figure S12), but they affect all four traits in the same direction.
As a consequence, trait correlations can emerge from the joint
effects of uncorrelated modules.

Prior studies indicate that tradeoffs between fitness compo-
nents (and associated traits) are central to the maintenance of
variation in this population (Mojica and Kelly 2010; Scoville et al.
2011; Mojica et al. 2012; Monnahan and Kelly 2015, 2017; Brown
and Kelly 2018). For this reason, we estimated the extent to which

Figure 4 Purifying selection on trans-effectors of highly connected genes. (A) The distribution of connectedness (as measured by R2 between a gene and
its module expression) for genes with associated cis (pink) and trans (blue) acting variants. (B) The average minor allele frequency of sites affecting each
gene in a given connectedness quartile, separated by cis- and trans-acting variants. Each data point in (B) is a gene, which is assigned a quartile and the
MAF of sites affecting it is calculated and plotted on the Y-axis.

Table 1 Variation in traits explained by the AIC best-fit model of gene expression modules

Trait R2 Modules H0:
Gene expression does

not predict trait variation

H0:
Modules do not

predict traits better than
random groups of genes

Days to germination 0.289 17 0.094 0.203
Days to flower 0.246 12 0.253 0.516
Corolla width 0.392 19 0.005** 0.040*
Corolla length 0.435 17 0.000*** 0.015*
Tube length 0.389 19 0.002** 0.078
Throat width 0.309 11 0.044* 0.190
Stigma length 0.382 18 0.005** 0.071
Anther length 0.400 19 0.001** 0.032*
Height 0.333 11 0.014* 0.341
Node 0.314 8 0.036* 0.639
Widest leaf 0.231 6 0.294 0.891
Flower size PC1 0.472 20 0.000*** 0.006**
Flower size PC2 0.270 9 0.149 0.501

Significance was established by permuting either the module eigen values across lines or the module gene composition. Bold indicates significance with *P<0.05,
**P< 0.01, ***P< 0.001.
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gene expression modules generate trait covariances. Among pair-

wise comparisons between the nine traits that are significantly
predicted by gene expression (Table 1, column 3, and see
Permutation 1 above), 35 of 36 pairs are significantly correlated

(R2 between 0.07 and 0.91, P < 0.05 for all but node by throat
width). We used estimates for the effect of each gene expression

module on each trait from the best-fit multiple linear model
(Table 1, column 1) to predict trait covariances using Equations

(1) and (2). If a module affects two traits, some fraction of the co-
variance between the traits can be attributed to the shared effect

of that module. We find that 26–54% of the covariance between
traits is attributable to this module-predicted covariance (35 pair-

wise comparisons). Thirty-three of 36 covariances are signifi-
cantly predicted by gene expression modules (same permuted

datasets as above, see Equations (1) and (2) in Methods, P < 0.05,
Figure 5, upper triangle). Modules are most strongly predictive of

trait covariances among the four traits that are better predicted
by modules than by the randomly grouped whole transcriptome

(corolla width, corolla length, stigma length, anther length, and
flower size PC1; see Table 1, column 4).

A large fraction of module variation is genetic. For each indi-

vidual, we calculated the eigen expression (PC1) for each module
and tested for an effect of inbred line using an ANOVA. Line

explains 57–91% of variance in gene module expression
(Supplementary Table S7). Of the 37 modules, 29 are significantly
affected by line (P < 0.05). There is no correlation between the

estimated genetic control of a module and the number of traits

for which a module is a significant predictor. However, all mod-

ules that significantly predict at least half of our measured traits

(save one, “brown”) are significantly affected by genotype (P from

0.046 to 8.18e�15, F from 1.34 to 4.04). That is to say, modules

that significantly predict many traits exhibit genetic variation

among lines.

Discussion
Natural selection on regulatory variants
Using a collection of sequenced inbred lines derived from a single

natural population of yellow monkeyflower (M. guttatus), we have

dissected the genetic variation in the floral bud transcriptome.

We found 12,458 SNPs with genome-wide significant associations

with expression, 62% of which act in cis. Striking differences in

the AFS suggest differing selection regimes on cis- and trans-act-

ing regulatory SNPs. Sites proximal to the affected gene are

enriched for intermediate frequency variants. SNPs distant from

target genes are enriched for rare variants. Hodgins-Davis et al.

(2015) argue that gene expression should evolve according to a

“house of cards” model, characterized by few mutations with

large effects and moderate stabilizing selection (as opposed to a

Gaussian model of evolution with many mutations of small effect

and weak selection). Stabilizing selection on a quantitative trait

with a fixed optimum predicts that minor alleles should be less

Figure 5 Gene expression predicts trait covariances. The bottom triangle shows trait correlations. A line denotes a significant correlation at P < 0.05. The
diagonal displays normalized trait histograms. Fraction covariance explained by gene expression, using the best-fit model coefficients for prediction, is
shown in the top diagonal. Any displayed number is significant, asterisks denote levels of significance (determined by permutation, P < 0.05, *P < 0.025,
**P < 0.01, ***P < 0.001).
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common than under neutral evolution. Trans-acting mutations
are more likely to be deleterious than cis-acting mutations if they
have more pronounced effects (see Introduction). The results of
this study suggest that different selective pressures operate on cis
and trans variation, consistent with previous work in a natural
population of Capsella grandiflora (Josephs et al. 2020). The distri-
bution of MAF for trans-effecting SNPs in Capsella was similar to
the Mimulus estimate (Figure 2). However, Capsella exhibits a
nearly uniform distribution of MAF for cis-SNPs, while there is a
definite inflation of intermediate frequency SNPs in Mimulus. The
skew of cis-acting SNPs toward intermediate frequency, relative
not only to trans-acting but also the genome as a whole, suggests
balancing selection.

Ascertainment is a central concern for inference in QTL and
association mapping studies (Beavis 1994). For loci with no effect
on expression, our permutation study indicates that rare-allele
SNPs are more likely to yield very low P-values than intermediate
frequency SNPs. Thus, false positives are more likely to come
from rare alleles than common, although permutation almost
never produced P-values that pass the thresholds imposed on the
real data (Supplementary Table S3A). Considering SNPs with
effects on expression, ascertainment depends on how we mea-
sure the “importance” of an SNP. In simulated data where SNPs
explain the same amount of expression variation as observed in
the real data (constant Vsnp), we find no effect of allele frequency
on the probability that an SNP is detected (Figure 3, gray bars). In
contrast, if we hold the effect of alleles constant (constant b),
then Vsnp is lower with extreme than intermediate allele frequen-
cies. For fixed b, the simulations indicate that an SNP with
equally frequent alleles (q¼ 0.5) is very likely to prove significant
(90% of cases) while the detection probability falls to below 25% if
q � 0:15 (Supplementary Table S3C). However, this sieve does
not explain the intermediacy of q for significant cis-SNPs in the
data. First, the number of significant tests in the highest MAF cat-
egories significantly exceed the predicted number under the con-
stant b simulations (Figure 3C). Second, the constant b

simulations predict that tests on SNPs with q � 0.5 will “fill in”
the lower portion of the distribution when the significance
threshold is reduced (orange bars in Figure 3, A and B). In other
words, SNPs that do not pass the stringent 10�12 threshold simply
because the minor allele is present in fewer lines should still rou-
tinely yield P< 10�9 or P< 10�6. The real data provide no indica-
tion of these “almost significant” SNPs in the range if
0:05 � q � 0:25. The distribution is skewed intermediate across
significance thresholds.

Figures 2 and 4 support the hypothesis that trans-effectors are
routinely subject to purifying selection, at least for mutations
with large enough effects to be detected in this study. Loci
influencing expression in trans can affect multiple components of
finely tuned networks simultaneously. Here, we show that the
MAF of SNPs affecting a gene’s expression is correlated with how
well that gene predicts the expression of many other genes (those
in the same coexpression module), what we call “connectedness.”
Genes that are well-connected in this sense are likely to be the
hub of a regulatory network, a role commonly filled by transcrip-
tion factors (Babu et al. 2004), although we do not detect an en-
richment for any particular type of gene in this set. We find that
SNPs affecting well-connected genes tend to be lower in fre-
quency and that the magnitude of decrease in MAF is stronger for
trans-acting SNPs than cis-acting SNPs (Figure 4). This difference
supports the idea that trans-effectors with broad pleiotropic
effects on many genes are more likely to affect regulatory hubs
and therefore be routinely subjected to purifying selection.

Previous studies suggest that genes with high network connectiv-
ity are constrained by selection (Hahn and Kern 2005; Ramsay
et al. 2009; Josephs et al. 2017), which could explain why their ex-
pression would also be stabilized.

Connectedness of genes affected by trans-SNPs might explain
the pattern of purifying selection, but it does not explain why cis-
acting variants exhibit an MAF distribution suggestive of balanc-
ing selection. Cis-acting variants did have smaller effect sizes,
which would explain a difference in severity of purifying selec-
tion, but not that allele frequencies at cis-SNPs are more interme-
diate than the genome-wide average. One potential explanation
is that cis-acting variants may evolve on a gene-by-gene basis to
counter the pleiotropic effects that trans-acting loci have on
many genes. The hypothesis that cis-acting variants might evolve
to mitigate trans-pleiotropy is supported by many studies finding
opposing cis- and trans effects on the same gene (Coolon et al.
2014; Wang et al. 2015; Mack et al. 2016; Metzger et al. 2017). In
this study, we find no such preponderance of compensatory cis/
trans pairs. Using a conservative set of 24 genes with both cis-
SNPs and inter-chromosome trans-SNPs, we find only one exam-
ple of cis/trans compensation.

Genetic effect on traits mediated through gene
expression
Understanding selection requires that we look at how genetic
effects on gene expression translate to effects on whole-
organism phenotypes and, ultimately, to fitness in the natural
environment. Table 1 shows that floral and plant height meas-
ures can be significantly predicted by the flower bud transcrip-
tome when abstracted into coexpression modules. The most
precise prediction is for overall flower size (flower size PC1) and
for the component measurements that jointly determine flower
size (corolla width and length, stigma and anther lengths). The
strength of prediction (nearly 50% of variation explained) is nota-
ble given that flower traits are likely established early in develop-
ment (Krizek and Anderson 2013). Accurate prediction of flower
size from the RNAseq data does not imply that the bud mRNA
from the exact time of sampling were causal to trait variation or
covariation. Measured transcript levels might simply be strongly
correlated through development time, which might suggest that
trait variation is continually reinforced through development.

Prediction precision was likely reduced by the fact that mod-
ules were estimated from RNAseq performed on one set of plants,
while the mean phenotypes were estimated from different plants
of the same inbred lines. Plants from the two experiments almost
certainly experienced subtle environmental differences (different
greenhouses, growth at different times of the year, different
years). The high R2 for flower size despite these limitations sug-
gests that stable relationships between genotypes and traits are
mediated through transcriptome variation. Additionally, the sep-
aration of experiments avoids a subtle but potentially important
bias. When phenotypes and gene expression levels are measured
on the same plants, the two can become associated owing to con-
founding factors, even if there is no effect of expression on phe-
notype. Imagine that plants differ randomly in receipt of a
resource such as soil nitrogen. If nitrogen affects both gene ex-
pression and phenotype, expression and phenotype will be corre-
lated even if there is no inherent relationship. Establishing the
mean phenotype of each line prior to measuring expression elim-
inates this bias (Rausher 1992).

Gene expression modules predict not only trait variation but
also the covariances between traits (Figure 5). Trait correlations
emerge when the same module influences multiple traits
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[Equations (3) and (4)]. We find that module predictions can ex-
plain up to 54% of the observed covariance between traits (throat
width and height). We further show that a substantial fraction of
the variation in expression modules has a genetic basis
(Supplementary Table S7), which suggests variation in gene ex-
pression as a potential cause of genetic correlations between
whole-plant traits. Understanding trait covariances is essential
when natural selection involves tradeoffs between traits. Such
tradeoffs can provide the mechanistic basis of balancing selec-
tion (Mérot et al. 2020), which is suggested in our data by the in-
termediacy of the AFS for cis-acting variants.

In many annual plants, suites of correlated life-history traits
related to rate of development (progression to flowering) are sub-
ject to a tradeoff between flowering time and fecundity. In
Mimulus specifically, variation in life-history traits is maintained
by opposing selective pressures on survival to flower and seed set
(Kelly 2008; Mojica and Kelly 2010; Mojica et al. 2012; Monnahan
and Kelly 2015; Troth et al. 2018; Monnahan et al. 2021). As with
many other species, small, fast-growing plants survive to flower
but make fewer seeds. Large, slow-growing plants have the ca-
pacity to make more seeds and perhaps disperse more pollen, but
risk not reaching maturity before the end of the growing season.
This type of tradeoff can maintain polymorphism through bal-
ancing selection on loci affecting the underlying traits such as
days to flower or flower size (Austen et al. 2017; Brown and Kelly
2018; Exposito-Alonso et al. 2018). Our bud transcriptome mod-
ules predict floral dimensions, but not development rate under
greenhouse conditions (days to germination or days to flower;
Table 1). However, we suggest that future studies measuring
gene modules from a range of tissues at different time points,
coupled with the statistical methods that we employ here
[Equations (3) and (4)], might determine whether the survival/fe-
cundity tradeoff in Mimulus contributes to the intermediate allele
frequency pattern evident for cis-acting transcriptional muta-
tions (Figure 2).

Scale of measurement for gene expression
Figure 1 contrasts two different ways to normalize read counts,
Box–Cox and log(countþ 1). The latter is most similar to models
typically applied in RNAseq studies, such as generalized linear
models that use the log-link function (e.g., DESeq2; Love et al.
2014). When expression is normalized in the same way across all
genes [such as with the log(countþ 1) method], rare alleles occur-
ring in lines with extreme expression produce many false posi-
tives as a result of “rarity disequilibrium” (Lappalainen et al. 2013;
Houle and Márquez 2015). When counts are instead power trans-
formed using an exponent (k) estimated for each gene separately
(Box–Cox), samples with extreme expression are pulled closer to
the mean of the resulting distribution (compare Figure 1, C and
D). This decreases the occurrence of spurious associations due to
rare alleles. We retained the log(countþ 1) analysis in Figure 1 as
a caution for future studies. This issue is likely to emerge in any
situation where the absolute count of individuals carrying the
rare allele is small (say <5).

Conclusion
The two major findings from this study are connected through
our summarization of the transcriptome in terms of gene expres-
sion modules. The first result is that cis-acting SNPs tend to have
intermediate allele frequencies (relative to the genome as a
whole), while trans-SNPs exhibit a rare-alleles model consistent
with purifying selection. Trans-acting mutations are most rare if

they have broad effects, with the latter measured by how strongly

a trans-affected gene predicts the overall expression of its mod-

ule. The second result is that expression modules predict flower

size with a surprising degree of precision. As a consequence, we

can attribute substantial fractions of the variance in flower size

measures to variation in expression modules (R2 values in

Table 1). Despite that expression levels of different modules are

largely uncorrelated (across lines), they can generate covariances

among traits because individual modules influence multiple

traits. This “transcriptome-explained” covariance can be a sub-

stantial portion of the total covariance across lines (up to 54%,

Figure 5). Our results do not provide a clear explanation for why

cis-acting SNPs exhibit allele frequencies consistent with balanc-

ing selection, but the prediction of trait covariances suggests how

future studies that may address this question. Specifically,

experiments that determine the nature and extent of transcrip-

tional control of development rate could provide a more mecha-

nistic understanding of balancing selection.

Data availability
Gene expression data have been submitted to NCBI’s SRA (project

number PRJNA736440). The Python scripts used to generate trait

covariances as well as those used for permutation and simula-

tions are available as Supplementary File S1.
Supplementary material is available at GENETICS online.
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