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Abstract

Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and hu-
man health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin
E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms
underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the
high mapping resolution of the maize Ames panel of�1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to gen-
erate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining
results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that
had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a
plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that
they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colo-
calized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to
enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and
provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.
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Introduction
Tocochromanols, which include the biosynthetically related
tocopherols and tocotrienols, are a group of plant-synthesized
lipid-soluble antioxidants that have a chromanol ring derived
from homogentisic acid (HGA) and isoprenoid-derived hydro-
phobic side chains. The saturated side chain of tocopherols is
derived from phytyl-diphosphate (PDP), whereas the tocotrienol
side chain has 3 double bonds and is derived from geranylger-
anyl diphosphate (GGDP). Tocopherols and tocotrienols occur as
4 biosynthetically related isoforms (a, b, d, and c) that vary in the
degree and position of methyl groups on their chromanol rings.
Among the tocochromanols, a-tocopherol has the highest
vitamin E activity (DellaPenna and Mène-Saffran�e 2011), while

tocotrienols tend to have greater antioxidant activity (Sen et al.
2006). Although severe vitamin E deficiency leading to ataxia
and myopathy is rare in human populations (Traber 2012), sub-
optimal dietary vitamin E intake exists in certain population
segments (Ford et al. 2006; McBurney et al. 2015) and has been
linked to an elevated risk of cardiovascular diseases (Knekt et al.
1994; Kushi et al. 1996). Tocochromanols are found at high levels
in plant seeds where they confer protection against lipid peroxi-
dation during seed storage and germination (Sattler et al. 2004).
However, a-tocopherol is not the major tocochromanol in
most cereal seed oils, which limits the dietary vitamin E
intake of both humans and animals (DellaPenna and Mène-
Saffran�e 2011).
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Tocochromanols are only synthesized by photosynthetic
organisms, and the tocochromanol biosynthetic pathway is
highly conserved in the plant kingdom (DellaPenna and Mène-
Saffran�e 2011). In the committed step of tocopherol synthesis
(Fig. 1), a homogentisate phytyltransferase (VTE2) condenses PDP
and HGA from the shikimate pathway to produce 2-methyl-6-phy-
tyl-1,4-benzoquinol (MPBQ) (Sattler et al. 2004). In the monocot lin-
eage, HGA can also be condensed with GGDP by homogentisate
geranylgeranyltransferase (HGGT1) to generate 2-methyl-6-gera-
nylgeranyl-1,4-benzoquinol (MGGBQ), the committed step for toco-
trienol synthesis. MPBQ and MGGBQ are substrates for a series of
methylations by MPBQ/MGGBQ methyltransferase (VTE3) and c-to-
copherol methyltransferase (VTE4) and cyclization by tocopherol
cyclase (VTE1), whose sequence and numbers of reactions gener-
ate the a, b, d, and c isoforms of tocopherols and tocotrienols
(Shintani and DellaPenna 1998; Porfirova et al. 2002; Cheng et al.
2003; Van Eenennaam et al. 2003; Sattler et al. 2004). While GGDP
for tocotrienol synthesis comes directly from the isoprenoid path-
way, the generation of PDP for tocopherol synthesis is more com-
plex and still not completely resolved. Though differences in leaf
tocopherol synthesis exist between monocots and dicots, tocoph-
erol synthesized in seed requires chlorophyll biosynthesis
(Diepenbrock et al. 2017; Zhan et al. 2019) and the activity of VTE7,
an alpha/beta hydrolase that interfaces with chlorophyll synthesis
to release phytol (Albert et al. 2022). Phytol is then sequentially
phosphorylated to PDP through the action of phytol kinase (VTE5)

and phytol phosphate kinase (VTE6) (Valentin et al. 2006; Vom
Dorp et al. 2015).

In the past decade, several loci associated with natural varia-
tion for the content and composition of tocochromanols in maize
grain have been identified via genome-wide association studies
(GWAS) in mapping panels. Several studies have reported strong
associations between vte4 and a-tocopherol concentration in
maize grain (Li et al. 2012; Lipka et al. 2013; Wang et al. 2018;
Baseggio et al. 2019), with relatively weaker associations detected
for vte1, hggt1, and an arogenate/prephenate dehydratase with
maize grain tocotrienol levels (Lipka et al. 2013; Baseggio et al.
2019). Wang et al. (2018) implicated genes outside of the core
tocochromanol biosynthetic pathway as playing a role in maize
grain tocopherol levels, including genes involved in fatty acid bio-
synthesis, chlorophyll metabolism, and chloroplast function.
While these combined studies provided some insight into the ge-
netic basis of tocochromanol levels in maize grain, these studies
were limited by mapping panel size and marker density.

Through a joint-linkage (JL) analysis and GWAS in the 5,000-
line US maize nested association mapping (NAM) panel with high
statistical power, Diepenbrock et al. (2017) identified 50 unique
QTL for tocochromanol grain traits. Of these, 13 QTL were re-
solved to 7 a priori pathway genes (dxs2, sds, arodeH2, hppd1,
hggt1, vte3, and vte4) and 6 nonpathway genes (por1, por2, snare,
ltp, phd, and fbn) that encoded predicted functions not previously
associated with tocochromanol traits. Although maize grain is a

Fig. 1. Tocochromanol biosynthetic pathways in maize. The 2 precursor pathways are represented as black boxes. The 6 quantified compounds are
indicated in black nonitalicized text. The names of key a priori genes are italicized at the pathway step(s) catalyzed by their encoded enzyme, with the
13 candidate causal gene loci identified in this study in red text. The 5 genes not previously shown to be associated with tocochromanols in maize grain
are red, bolded, and underlined. Compound abbreviations: DMGGBQ, 2,3-dimethyl-5-geranylgeranyl-1,4-benzoquinol; DMPBQ, 2,3-dimethyl-6-phytyl-
1,4-benzoquinol; GGDP, geranylgeranyl diphosphate; GG-Chlorophyll, geranylgeranyl-chlorophyll a; HGA, homogentisic acid; HPP, p-
hydroxyphenylpyruvate; MEP, methylerythritol 4-phosphate; MGGBQ, 2-methyl-6-geranylgeranyl-1,4-benzoquinol; MPBQ, 2-methyl-6-phytyl-
1,4-benzoquinol; Phytyl-DP, phytyl diphosphate; Phytyl-P, phytyl monophosphate; SAM, S-adenosyl-L-methionine; SAH, S-adenosyl-L-homocysteine.
Gene abbreviations: 1-deoxy-D-xylulose-5-phosphate synthase (dxs1 and 2); a-/b-hydrolase family protein (vte7); arogenate/prephenate dehydrogenase
family protein (arodeH2); phytol kinase (vte5); phytol phosphate kinase (vte6); p-hydroxyphenylpyruvate dioxygenase (hppd1); protochlorophyllide
reductase (por1 and 2); homogentisate geranylgeranyltransferase (hggt1); homogentisate phytyltransferase (vte2); MPBQ/MGGBQ methyltransferase
(vte3); c-tocopherol methyltransferase (vte4); S-adenosylmethionine transporter 1 (samt1); tocopherol cyclase (vte1). The vte7 locus consists of tandemly
duplicated genes (Zm00001d006778 and Zm00001d006779) in B73 RefGen_v4.

2 | GENETICS, 2022, Vol. 221, No. 4

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/221/4/iyac091/6603118 by guest on 19 April 2024



nongreen, nonphotosynthetic tissue, 2 protochlorophyllide
reductases (POR1 and POR2) were found to be major loci control-
ling total tocopherols and were hypothesized to be part of a cycle
that provides chlorophyll-derived phytol for tocopherol synthesis
in the maize embryo, which contain exceedingly low, but detect-
able, levels of chlorophylls. The involvement of por2 in tocopherol
accumulation in maize grain was transgenically confirmed by
overexpression (Zhan et al. 2019). Although the US NAM panel
provided unparalleled mapping resolution for these 13 QTL, 37
QTL for tocochromanols with moderate effects or limited con-
trasting genotypes in the NAM panel could not be resolved to the
gene level, thus other mapping approaches combined with more
diverse mapping panels could have substantial utility in identify-
ing additional underlying candidate causal genes.

For terminal phenotypes such as grain tocochromanols, inter-
mediate phenotypes or endophenotypes can offer orthogonal ge-
netic information to better connect genotype to phenotype. In a
gene-based association approach that can generate insights into
biological processes, a transcriptome-wide association study
(TWAS) correlates mRNA abundance with complex trait varia-
tion, which allows for the statistical connection of an intermedi-
ate phenotype to a terminal phenotype (Hirsch et al. 2014; Lin
et al. 2017; Pasaniuc and Price 2017; Li et al. 2021). In an assess-
ment of TWAS for the genetic dissection of tocochromanol and
carotenoid maize grain traits in the Goodman-Buckler associa-
tion panel, Kremling et al. (2019) showed that the statistical power
to detect previously identified causal genes could be increased
through an ensemble approach combining GWAS and TWAS
results with the Fisher’s combined test (FCT). Additionally, this
approach was used to identify plausible causal genes associated
with natural variation for water use efficiency traits in sorghum
(Ferguson et al. 2021; Pignon et al. 2021). The genetic markers used
in GWAS could also be linked to mRNA abundance via expression
quantitative trait locus (eQTL) mapping (Majewski and Pastinen
2011), enabling the regulatory landscape of traits to be better ex-
plored as has been conducted for oil content and composition in
maize grain (Li et al. 2013).

In this study, we conducted a comprehensive genetic dissec-
tion of tocochromanol grain phenotypes in a large maize associa-
tion panel (�1,500 inbreds) that leveraged the scoring of �12.2
million SNP markers and transcript abundances of more than
22,000 genes from developing grain. Our integrated GWAS and
TWAS approach combined with eQTL mapping to pinpoint multi-
ple candidate causal genes and uncover their regulatory control.

Materials and methods
Experimental design for genetic mapping
A collection of 1,815 maize inbred lines from the Ames panel
(Romay et al. 2013) was grown as a single replicate at Iowa State
University in Ames, IA, in 2015 and 2017. The Ames panel was ar-
ranged in an augmented complete block design. For each year, 2
blocking directions were assigned: each range block consisted of
3 adjacent rows of plots, and each pass block consisted of 8 adja-
cent columns of plots. At least one B73 check plot was planted
within each pass and range block. The inbred lines were grouped
into 2 and 3 tiers for 2015 and 2017, respectively, according to
their days to silking (flowering time) recorded in Romay et al.
(2013) for the 2015 design and pollination date in 2015 for the
2017 design. Experimental units were 1-row 3.05 m plots having
�18 plants, with 0.76 m inter-row spacing and a 0.76 m alley.
Approximately 6 plants per plot were self-pollinated and hand-
harvested at physiological maturity. The kernels from all dried

and shelled ears were bulked to form a representative sample.
For each plot, 25 kernels were ground in an IKA Tube Mill Control
(IKA-Werke, Staufen, Germany) and ground tissue stored in cryo-
vials at �80�C.

Phenotypic data analysis
The extraction of tocochromanols from 15 to 20 mg of ground
kernels and their quantification by high-performance liquid chro-
matography (HPLC) and fluorometry were as previously described
(Lipka et al. 2013). Briefly, tocopherols and tocotrienols were
assessed on 3,539 grain samples from 1,762 inbred lines and the
repeated B73 check plots. The 9 evaluated tocopherol and toco-
trienol phenotypes in lg g�1 dry seed were as follows: a-tocoph-
erol (aT), d-tocopherol (dT), c-tocopherol (cT), a-tocotrienol (aT3),
d-tocotrienol (dT3), c-tocotrienol (cT3), total tocopherols (RT, cal-
culated as aTþ dTþ cT), total tocotrienols (RT3, calculated as
aT3þ dT3þ cT3), and total tocochromanols (RTT3, calculated as
RTþRT3). Statistical outliers were identified and filtered from the
raw HPLC data, followed by a mixed linear model analysis that
modeled genetic and nongenetic (field and laboratory) effects to
produce best linear unbiased estimator (BLUE) values for the 1,762
inbred lines (Supplementary Table 1) and heritability estimates as
described in the Supplementary Methods. Considering that mor-
phologically extreme grain types can potentially have inflated toco-
chromanol concentrations based on a dry sample weight basis, we
conservatively excluded 265 inbred lines that had been classified as
sweet corn, popcorn, or having other endosperm mutations.

Genotypic data
We used the genotype data processing and BEAGLE v5.0
(Browning et al. 2018) imputation approaches implemented by
Wu et al. (2021) as described in the Supplementary Methods. The
generated imputed marker data set for enabling GWAS of 1,462
inbred lines with both genotypic and phenotypic data consisted of
14,613,169 SNPs from maize HapMap 3.2.1 (Bukowski et al. 2018) in
B73 RefGen_v4 coordinates. These SNP loci were further filtered
for quality to produce a high quality set of 12,184,805 SNPs that
had minor allele frequency (MAF) �1% and predicted dosage r2

(DR2) �0.80 (Supplementary Data Set 1) for performing GWAS
with the mixed linear model. In PLINK version 1.9 (Purcell et al.
2007) with a sliding window of 100 kb and step size of 25 SNPs, the
complete set of 12,184,805 SNPs was LD pruned to construct 2 re-
duced marker sets (Supplementary Data Set 1): (1) 7,319,895 SNPs
with pairwise r2 < 0.99 for performing GWAS with a multilocus
mixed model (MLMM), and (2) 344,469 SNPs with pairwise r2 < 0.10
for estimation of population structure and relatedness.

Genome-wide association study
We conducted GWAS of the 9 tocochromanol phenotypes scored
on the 1,462 lines with a previously described procedure (Wu
et al. 2021). In brief, to correct for heteroscedasticity and non-nor-
mality of error terms, the Box-Cox power transformation proce-
dure (Box and Cox 1964) was used to select an optimal value of
convenient lambda for transforming the non-negative BLUE val-
ues of each phenotype (Supplementary Table 2). Given that sev-
eral negative BLUE values were generated in the model fitting
process, we added a constant that made all values positive and
no less than 1E� 09 before applying the transformation
(Supplementary Table 2). Each of 12,184,805 SNPs was tested for
an association with transformed BLUE values from the 1,462 lines
(Supplementary Table 3) using a mixed linear model (Yu et al.
2006) that employed the population parameters previously deter-
mined approximation (Zhang et al. 2010) in the R package GAPIT

D. Wu et al. | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/221/4/iyac091/6603118 by guest on 19 April 2024



version 2018.08.18 (Lipka et al. 2012). In GAPIT, the reduced set of
344,469 SNPs was used to calculate the kinship matrix with the
VanRaden method I (VanRaden 2008) and principal components
(PCs). The optimal number of PCs to include in the mixed linear
model fitted for each phenotype was determined by the Bayesian
information criterion (BIC) (Schwarz 1978). The likelihood-ratio-
based R2 statistic (R2

LR) (Sun et al. 2010) was used to approximate
the amount of phenotypic variation explained by a SNP. The
“p.adjust” function in base R version 4.0.2 (R Core Team 2018) was
used to apply the false discovery rate (FDR) multiple test correc-
tion procedure (Benjamini and Hochberg 1995) to the P-values of
tested SNPs.

To control for large-effect loci, we used the MLMM approach of
Segura et al. (2012) as implemented by Wu et al. (2021) to conduct a
GWAS of each transformed tocochromanol phenotype with the re-
duced set of 7,319,895 SNPs that alleviated model constraints by
removing perfectly correlated SNPs. In each model, we included
the same kinship matrix and BIC-determined optimal number of
PCs that had been used for GWAS with the mixed linear model.

Experimental design for transcriptomic profiling
In 2018, 1,023 of the 1,815 maize inbred lines from the Ames
panel evaluated for grain tocochromanols plus 5 additional
founders of the US maize NAM panel (Yu et al. 2008; McMullen
et al. 2009) were grown as a single replicate at Iowa State
University. This germplasm set was initially constructed by in-
cluding 256 lines that met at least one of the following criteria: (1)
extreme (high or low) for a grain metabolite phenotype in the
2015 field trial; (2) founder of the US NAM panel; or (3) available
genome assembly. The additionally randomly selected 771 lines
were included to increase genetic diversity and sample size. The
1,028 noncheck lines were partitioned and randomized into 24
augmented incomplete blocks based on pollination dates
recorded in the 2015 and 2017 field trials and divided across 2
tiers. A B73 check plot was planted within each block to control
for spatial variation across the field. Additionally, 2 local checks
were planted at random positions in each block to account for
temporal variation across fresh harvest dates that spanned more
than a month. Within each block, the line that had flowered the
latest in previous years was selected to serve as one of the 2 local
checks; ties were broken by choosing the line with the highest
sample call rate based on a filtered partially imputed GBS data
set (Supplementary Data Set 2). Each selected local check was
also planted in their adjacent later-flowering block, so that 2 local
check lines were present in blocks 2–24. An additional early-
flowering line (S 117) was identified as a local check and planted
in block 1, ensuring that 2 local check lines were also planted in
block 1. In addition, the 25 local checks (S 117, C38, A508, A641
Goodman-Buckler, C31, 807, LH202, 764, PHG71, PHB47, SD101,
A680, B93, NC292, NC280, LH208, H100, NC252, NC314, LH51, CI
187-2, NC324, Mo11, NC334, and M37W) were planted in a sepa-
rate third tier to account for field effects on these lines.
Experimental units were 1-row plots of the same dimensions and
plant numbers as used in the genetic mapping experiments. Of
the �6 pollinated ears per plot, a single self-pollinated ear was
hand-harvested at �23 days after pollination (DAP), followed by
immediately freezing the dehusked ear in liquid nitrogen and
keeping it covered in dry ice (and, for some samples, frozen at
�80�C) until shelling. The 23 DAP time point was selected to cap-
ture maximal increase in tocochromanols and strong expression
of known pathway genes (Diepenbrock et al. 2017). To control for
temporal effects, a self-pollinated ear of a local check from the
third tier was hand-harvested at �23 DAP on each day of fresh

harvest, with all harvested ears identically processed with liquid
nitrogen and dry ice prior to shelling. The midsection of each fro-
zen ear was individually shelled on dry ice and its kernels stored
at �80�C. In total, 1,012 noncheck and 107 check kernel samples
were collected.

RNA isolation and 30 mRNA sequencing
Eight to 10 frozen kernels per sample were ground using liquid
nitrogen cooled grinding cups in an IKA Tube Mill Control
(IKA-Werke, Staufen, Germany) and �100 mg of ground tissue
was used for RNA isolation using a modified hot borate method
(Wan and Wilkins 1994). RNA samples were DNase treated and
checked for quality per Hershberger et al. (2022). RNA samples
were randomized into 96-well plates and shipped overnight on
dry ice to the Genomics Facility of the Cornell Institute of
Biotechnology. Included in each plate submission were positive
controls consisting of the same pool of B73 control RNA aliquoted
into 4 wells in each plate, as well as 4 negative controls per plate
consisting of water. Libraries were constructed using the Lexogen
QuantSeq 30 mRNA-Seq Library Kit FWD (Lexogen, Greenland,
NH) and sequenced on an Illumina NextSeq 500 producing 85 nt
single-end reads (Illumina, San Diego, CA) with each plate being
split in half and each half being sequenced on a single lane to
achieve desirable coverage.

Expression abundance determination
The 30 QuantSeq reads were cleaned using 2 rounds of Cutadapt
version 2.3 (Martin 2011) to trim Illumina adapters, the first
12 bases, and polyA tails. Reads were then aligned to the
B73 RefGen_v4 reference genome (Jiao et al. 2017) using HISAT2
version 2.1.0 (Kim et al. 2019) with the following parameters:
–min-intronlen 20, –max-intronlen 60,000, –dta-cufflinks, and
–rna-strandness F. The resultant alignments were then sorted
using SAMTools version 1.9 (Li et al. 2009). Counts were then gen-
erated using the htseq-count function within HTSeq version
0.11.2 (Anders et al. 2015) using the B73 version 4.59 annotation
with the following parameters: –format¼bam, –order¼pos,
–stranded¼yes, –minaqual¼10, –idattr¼ID, –type¼gene, and
–mode¼union. The DESeq2 rlog function (Love et al. 2014) was
used to normalize the count data for the set of 1,171 RNA sam-
ples (1,119 kernel samples plus 52 positive controls). All genes
with a normalized count of less than or equal to zero in all sam-
ples were removed from the final count matrix. Several stringent
quality control measures based on sampling concerns (e.g. moldy
kernels, etc.), alignment rate, between sample correlation value,
genotype confirmation assessment, and heterozygosity
level were implemented to filter out low quality samples as de-
scribed in the Supplementary Methods and summarized in
Supplementary Table 4, resulting in a final set of 741 high-quality
samples that were used for subsequent analysis.

Expression data analysis
The expression data set consisting of 665 samples for 664 non-
check lines and 76 samples for 25 check lines was further strin-
gently filtered for statistical outliers at the gene level following
the approach of Hershberger et al. (2022) to ensure high quality
data for statistical analysis. The filtering steps and metrics are
summarized in Supplementary Table 4. With the filtered expres-
sion data set, we fit a mixed linear model that enabled the model-
ing of genetic and nongenetic effects as described in the
Supplementary Methods. Of the 664 lines, we excluded 104 classi-
fied as sweet corn, popcorn, or having other endosperm muta-
tions and an additional 15 lines not analyzed in GWAS. The final
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data set contained BLUE expression values of 22,136 genes across
545 lines.

To account for inferred confounders that influence expression
variation, the PEER approach (Stegle et al. 2012) was separately
applied to the 545 line � 22,136 gene matrix of BLUE expression
values as previously described (Hershberger et al. 2022). Briefly,
the optimal number of PEER hidden factors was determined to be
11 by finding the “elbow” in the curve of the diagnosis plot of the
factor relevance. The contribution of 11 PEER hidden factors was
subtracted to generate a residual data set of the BLUE expression
values (hereafter, PEER values). Studentized deleted residuals
(Neter et al. 1996) were used to identify and remove significant
outliers (Bonferroni a¼ 0.05) from the set of PEER values
(Supplementary Data Set 3).

Transcriptome-wide association study
We conducted TWAS on the 545 lines and 22,136 genes with a
mixed linear model approach (Yu et al. 2006; Zhang et al. 2010).
Briefly, a mixed linear model was fit for the combination of each
tocochromanol phenotype (transformed BLUE values, response
variable) and expressed gene (outlier-screened PEER values, ex-
planatory variable) using the “GWAS” function and “P3D” option
set to FALSE in the R package rrBLUP version 4.6 (Endelman 2011).
To construct the SNP marker set for the 545 lines, 12,018,644 bial-
lelic SNPs (DR2� 0.80; MAF � 1%) were subsetted from the full set
of 14,613,169 SNPs and pruned down to 328,892 SNPs with pair-
wise r2 < 0.10 with a 100-kb sliding window and 25 SNP step size in
PLINK version 1.9 (Supplementary Data Set 4). The PCs and the
kinship matrix were generated from the 328,892 SNPs as described
above. The optimal models for all tocochromanol phenotypes in-
cluded kinship and no PCs, as determined by the BIC (Schwarz
1978). The TWAS for the vte7 locus was conducted separately,
given that reads for the vte7 locus were uniquely processed to ac-
count for tandemly duplicated genes (Supplementary Methods).
The genes detected by TWAS were used for a GO term enrichment
analysis in biological process (GO Ontology database DOI: 10.5281/
zenodo.6399963 Released 2022 March 22) using the PANTHER
overrepresentation test (Released 2022 February 02) (Mi et al. 2019)
with Fisher’s exact test and significance declared at FDR P-value
<0.05. Only GO biological processes that were significant and had
>1-fold enrichment were considered.

Fisher’s combined test
The top 10% of the smallest P-value SNPs (1,218,480 SNPs) from
GWAS with the mixed linear model were selected to perform FCT
following the method of Kremling et al. (2019). The sampling of
SNPs was focused on the top 10% to reduce the computational
burden, given that the bottom 90% of SNPs from GWAS were not
expected to produce novel associations in the FCT. In brief, the
GWAS P-value of each top 10% SNP was assigned to its nearest
gene based on the B73 RefGen_v4 assembly and B73 v4.59 anno-
tation and then paired with the TWAS P-value for that gene. For
genes not tested in TWAS, their TWAS P-values were set to 1 be-
fore combining with GWAS P-values. For each gene, FCT was con-
ducted with the “sumlog” function implemented in the R package
metap version 1.1 (Dewey 2019).

Candidate gene identification
Given that GWAS, TWAS, and FCT differ in their statistical power
and type of independent variables, we did not directly compare
P-value thresholds across methods but instead used the rankings
of P-values following that of Kremling et al. (2019). The top
0.02% of SNPs were selected according to their P-value from

GWAS results for each phenotype, with selection of the percent-
age threshold guided by the number of JL-QTL detected for each
of the 9 tocochromanol grain phenotypes (12-21 JL-QTL per phe-
notype) in the US maize NAM panel (Diepenbrock et al. 2017).
Considering the rapid LD decay in the Ames panel (Romay et al.
2013), candidate genes were identified within 100 kb of the peak
SNP for each locus following the method of Wu et al. (2021). The
top 0.5% of genes according to their P-value were selected from
TWAS and FCT results for each phenotype, resulting in a total
number of unique genes identified across phenotypes by each
method comparable to that of GWAS.

The identification of candidate genes was assisted by a list of
126 a priori candidate genes involved in the accumulation of
grain tocochromanol levels (Supplementary Table 5) that was as-
sembled following the bioinformatic method of Lipka et al. (2013).
The physical positions of 50 unique JL-QTL common support
intervals (CSIs) and GWAS markers associated with the 9 toco-
chromanol grain phenotypes in the US NAM panel (Diepenbrock
et al. 2017) were uplifted via Vmatch version 2.3.0 (Kurtz 2010) to
B73 RefGen_v4 coordinates (Supplementary Tables 6 and 7) as de-
scribed in Wu et al. (2021). A BLASTP with default parameters was
conducted to identify the top hits of undescribed candidate
causal genes (Supplementary Table 8) in Arabidopsis and rice as
previously described (Wu et al. 2021).

eQTL mapping
We performed expression QTL (eQTL) mapping of the identified
candidate causal genes. To conduct eQTL mapping, the
12,018,644 SNPs subsetted in the TWAS approach were individu-
ally tested for association with PEER values of each candidate
causal gene using a mixed linear model implemented in GAPIT
version 2018.08.18 (Lipka et al. 2012) in R version 4.0.2 (R Core
Team 2018). The calculated PCs and kinship matrix used in
TWAS were used in eQTL mapping, with the optimal number of
PCs determined by BIC (Schwarz 1978). To have a stringent con-
trol of the Type I error rate in the presence of complex LD pat-
terns and strong association signals, we accounted for multiple
testing with a 5% Bonferroni adjusted significance threshold
(P-value �4.16E� 09), with peak SNPs of loci identified as de-
scribed in Wu et al. (2021).

Annotation of variants
SNP effect analysis (SnpEff; Cingolani et al. 2012) was conducted
following the approach of Diepenbrock et al. (2021) to predict the
effects of GWAS-associated SNPs located within candidate causal
genes. To quantitatively assess whether variant sites are evolu-
tionarily conserved, genomic evolutionary rate profiling (GERP;
Davydov et al. 2010) scores available from 2 earlier studies (Kistler
et al. 2018; Ramstein et al. 2020) were extracted for the same SNP
sites within candidate causal genes.

eQTL and GWAS CAusal Variants Identification in
Associated Regions
To quantify the probability that a variant was responsible for
both GWAS and cis-eQTL signals, we used the eQTL and GWAS
CAusal Variants Identification in Associated Regions (eCAVIAR)
method of Hormozdiari et al. (2016) that accounts for LD patterns
and allelic heterogeneity when implementing a probabilistic
model for integrating GWAS and cis-eQTL results. The eCAVIAR
approach was applied to candidate causal gene loci detected via
GWAS that had a significant cis-eQTL signal. For each gene–phe-
notype pair, the t-values of all significant GWAS and eQTL SNPs
within 100 or 250 kb of the candidate causal gene and pairwise

D. Wu et al. | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/221/4/iyac091/6603118 by guest on 19 April 2024



LD matrices calculated from these SNPs in PLINK 1.9 (Purcell
et al. 2007) were used as the input data sets for the eCAVIAR
software. The 6250-kb window was only used for 2 genes
(arodeH2 Zm00001d014734 and vte1) that had a peak eQTL sig-
nal >100 kb from its respective gene. Given the potential of
allelic heterogeneity, the maximum number of causal SNPs at
a locus was set to 3. A stringent colocalization posterior proba-
bility (CLPP) cutoff threshold of �0.01 was used to identify
SNPs that were potentially causal in both the GWAS and eQTL
studies.

Results
Phenotypic variation
We assessed the extent of quantitative variation for tocochroma-
nol concentrations in physiologically mature grain samples
harvested from 2 outgrowths of the maize Ames panel. The mea-
surement of 6 tocochromanol compounds by HPLC showed that
cT (�55%) and cT3 (�23%) collectively accounted for nearly 80%
of RTT3, whereas the a and d isoforms for both tocopherols and
tocotrienols individually represented approximately 1% (dT3) to
10% (aT3) of RTT3 (Table 1). The tocochromanol compound with
the highest vitamin E activity, aT, had the third lowest mean con-
centration (5.83 lg g�1 dry seed) and accounted for only �8% of
RTT3. Within a compound class, significant pairwise correlations
between BLUE values (a¼ 0.05) were strongest between the d and
c isoforms for tocopherols (r¼ 0.67) and tocotrienols (r¼ 0.62),
whereas the strongest correlation between compound classes
was observed for aT with aT3 (r¼ 0.45). However, only weak cor-
relations (�0.15 to 0.19) were found between all other pairs of
compounds despite having a shared biosynthetic pathway
(Supplementary Fig. 1). As inferred from the high estimates of
heritability on a line-mean basis (0.77 to 0.94, Table 1), the major-
ity of variation for each of the 6 tocochromanol compounds and 3
sum phenotypes was attributable to genetic variation in the
Ames panel (Table 1 and Supplementary Fig. 2).

Genetic analysis of tocochromanol levels in grain
We integrated GWAS and TWAS results through FCT, an ensem-
ble approach shown to have enhanced statistical power over ei-
ther GWAS or TWAS alone for the detection of causal genes
associated with natural variation for tocochromanol grain pheno-
types in maize (Kremling et al. 2019). The findings from FCT (top
0.5%), GWAS (top 0.02%), and TWAS (top 0.5%) for each pheno-
type were integrated with the genetic mapping results of the
same grain phenotypes in the US NAM panel (Table 2), with the
intent to further resolve loci previously found in the NAM panel

to the level of causal genes (Fig. 2 and Supplementary Fig. 3).
Within each analysis, a total of 720 unique genes were identified
from 121 loci in GWAS, 676 in TWAS, and 918 in FCT across the 9
tocochromanol grain phenotypes (Supplementary Tables 9–12).
Of these, 330 (GWAS), 299 (TWAS), and 646 (FCT) genes were lo-
cated within NAM JL-QTL CSIs of the 9 phenotypes (Diepenbrock
et al. 2017). When conducting a GO term enrichment analysis of
the 676 genes identified in TWAS, we did not find any of the GO
biological processes to be significant at 5% FDR and >1-fold
enriched.

Of the 13 gene loci identified to associate with grain tocochro-
manols in the US NAM panel by Diepenbrock et al. (2017), 5 (por1,
por2, vte4, hggt1, and hppd1), which tended to be large-effect loci
in the NAM panel, were detected by FCT for one or more pheno-
types in the Ames panel (Table 2). Of the 5 genes, por1, por2, vte4,
and hggt1 were also identified by both GWAS and TWAS, whereas
hppd1 was only detected by GWAS. In contrast, dxs2, another of
the 13 genes identified by Diepenbrock et al. (2017), was only
detected by TWAS. Two copies of arodeH2 (Zm00001d014734 and
Zm00001d014737) were within 100 kb of GWAS peak SNPs for cT3
and RT3, with Zm00001d014734 having been previously impli-
cated by Diepenbrock et al. (2017) as a gene with small allelic
effects involved in the genetic control of aT3 and RT3. However,
in the Ames panel, Zm00001d014737 was detected by both FCT
and GWAS, whereas Zm00001d014734 was only detected by
GWAS. In total, we reidentified 7 of the 13 genes from
Diepenbrock et al. (2017) and implicated a second arodeH2 copy
for controlling variation in tocotrienols.

The detection of these 8 genes, one of which a new association,
illustrated the gene-level resolution of our integrated genetic map-
ping approach; thus, it was applied to better resolve NAM JL-QTL
CSIs and detect loci novel in the Ames panel. In total, 4 NAM JL-
QTL CSIs were more finely dissected, resulting in novel associa-
tions with 3 loci (samt1, vte7, and dxs1) and more precise mapping
of a fourth (vte1) not fully resolved in the US NAM panel. A gene
encoding a SAM transporter (samt1, Zm00001d017937) was
detected by FCT, GWAS, and TWAS. Zm00001d017937 encodes a
protein with 77% identity to Arabidopsis S-adenosylmethionine
transporter 1 (SAMT1, AT4G39460) (Supplementary Table 8),
which transports SAM, a tocochromanol cosubstrate for the VTE3
and VTE4 methyltransferases, through plastid envelopes and neg-
atively impacts leaf tocopherol levels when silenced (N. benthami-
ana) or knocked out (Arabidopsis) (Bouvier et al. 2006; Palmieri et al.
2006). When considering the top 0.02% of SNPs most associated
with dT in GWAS, the vte7 locus consisting of tandemly duplicated
genes (Zm00001d006778 and Zm00001d006779) was found to be
�64 kb from a single associated SNP (Fig. 2). This same SNP served

Table 1. Means, ranges, and SDs of untransformed BLUE values (in lg g�1) for 9 tocochromanol grain phenotypes evaluated in the Ames
panel and estimated heritabilities on a line-mean basis and their SEs across 2 years.

Phenotypea Number of lines BLUEs Heritabilities

Mean Range Std. Dev. Estimate Std. Err.

aT 1,452 5.83 –1.79 to 41.36 4.59 0.87 0.006
dT 1,456 1.74 –0.33 to 14.32 1.62 0.85 0.007
cT 1,458 42.19 –1.32 to 158.91 21.34 0.86 0.006
RT 1,460 49.95 1.79 to 174.84 22.65 0.85 0.007
aT3 1,456 7.87 0.89 to 23.39 3.21 0.77 0.010
dT3 1,454 0.93 0.01 to 17.05 0.97 0.94 0.003
cT3 1,458 17.60 –1.79 to 90.39 11.71 0.93 0.003
RT3 1,458 26.55 2.62 to 111.01 13.32 0.91 0.004
RTT3 1,460 77.04 18.13 to 205.36 28.08 0.87 0.006

a The 3 sum phenotypes were calculated as follows: RT¼aTþ dTþ cT; RT3¼aT3þ dT3þ cT3; RTT3¼RTþRT3.
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as the peak of a dT-associated locus consisting of 45 significant
SNPs at an FDR of 5% (Supplementary Table 12), providing stron-
ger evidence for detection of vte7 in the Ames panel compared to
the NAM panel. Two additional a priori pathway genes, dxs1
(TWAS) and vte1 (FCT and GWAS), were associated with one or
more tocochromanol grain phenotypes (Table 2). In addition to

more finely dissecting NAM JL-QTL CSIs, we detected a significant
association of vte5 with RTT3 by GWAS alone, the first report of
such an association for this locus with any tocochromanol grain
trait in maize. Therefore, the Ames panel not only offered gene-
level resolution for existing NAM JL-QTL CSIs, but also enabled the
identification of loci not detected in the NAM panel.

Table 2. Genetic mapping results of the 9 tocochromanol grain phenotypes in the Ames panel.

Gene ID Locusa Chr Gene start Gene end GWASb TWASc FCTd NAM JL-QTL
CSI IDe

Zm00001d032576 por1 1 231,120,510 231,123,615 RTf dT, cT, RT, RTT3 dT, cT, RT, RTT3 5
Zm00001d001896 vte5 2 2,509,567 2,511,414 RTT3 – – –
Zm00001d006778 vte7g 2 216,443,683 216,448,352 dT – – 12
Zm00001d006779 216,461,133 216,468,803
Zm00001d013937 por2 5 25,431,430 25,434,346 dT, cT, RT, RTT3 aT, dT, cT, RT, RTT3 aT, dT, cT, RT, RTT3 24
Zm00001d014734 arodeH2 5 61,099,110 61,100,192 cT3, RT3 – – 25
Zm00001d014737 arodeH2 5 61,117,986 61,119,432 cT3, RT3 – dT3, cT3, RT3 25
Zm00001d015356 hppd1 5 86,084,655 86,086,755 cT3, RT3 – dT3, cT3, RT3, RTT3 26
Zm00001d015985 vte1 5 136,805,708 136,822,194 dT3 – dT, dT3 26
Zm00001d017746 vte4 5 205,825,586 205,829,216 aT, aT3, dT,

cT, cT3, RTT3
aT, aT3, cT3 aT, aT3, dT, cT, cT3 28

Zm00001d017937 samt1 5 210,385,310 210,401,948 aT3, dT dT dT, dT3 29
Zm00001d038170 dxs1 6 150,418,144 150,422,431 – cT3 – 32
Zm00001d019060 dxs2 7 14,494,700 14,497,925 – dT3, cT3, RT3 – 35
Zm00001d046558 hggt1 9 95,895,575 95,899,061 aT3, dT3, cT3 dT3, cT3, RT3 aT3, dT3, cT3,

RT3, RTT3
45

a The name and symbol of a maize gene locus are represented with lower-case, italic characters, to be consistent with maize genetics nomenclature.
b Genome-wide association study.
c Transcriptome-wide association study.
d Fisher’s combined test.
e Common support interval (CSI) from joint linkage-quantitative trait loci (JL-QTL) results (Supplementary Table 6) of 9 tocochromanol grain phenotypes

analyzed in the maize NAM panel (Diepenbrock et al. 2017) that contain the open reading frame of the gene.
f The 3 sum phenotypes were calculated as follows: RT¼aTþ dTþ cT; RT3¼aT3þ dT3þ cT3; RTT3¼RTþRT3.
g The vte7 locus could not be tested in FCT due to the lack of nonparalogous SNPs flanking the duplicated alpha/beta hydrolase genes (Zm00001d006778 and

Zm00001d006779).

Fig. 2. GWAS, TWAS, and FCT results for dT. a) Upset plot showing the number of overlapping genes between GWAS, TWAS, FCT, and a priori pathway
genes involved in the biosynthesis of chlorophylls and tocochromanols (Supplementary Table 5). The number of genes located within the US NAM joint
linkage-quantitative trait loci (JL-QTL) common support interval (CSI) for dT is highlighted in blue in the bar plots. b) Manhattan plots of GWAS, TWAS,
and FCT results. Each point represents a SNP or gene with its �log10 P-value (y-axis) from GWAS, TWAS, and FCT plotted as a function of physical
position (Mb, B73 RefGen_v4) across the 10 chromosomes of maize (x-axis). Red horizontal dashed lines indicate the thresholds of top 0.02%, top 0.5%,
and top 0.5% for GWAS, TWAS, and FCT, respectively. Candidate causal genes (Table 2) that are within 100 kb of a top 0.02% GWAS peak SNP or ranked
in the top 0.5% in TWAS or FCT are highlighted with red dots and labeled in black in the Manhattan plots. Candidate causal genes that are within 1 Mb
of a top 0.02% GWAS peak SNP are labeled in gray. Novel associations are marked with a solid line, black rectangle. Novel associations that only passed
the 5% false discovery rate in GWAS are marked with a dashed line, black rectangle.
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We also conducted a GWAS with the MLMM approach, allow-
ing us to better resolve association signals underpinned by large-
effect loci. Of the 11 gene loci detected by GWAS with the mixed
linear model (Table 2), 8 genes (por2, vte1, both arodeH2 copies,
hppd1, vte4, samt1, and hggt1) were located within 100 kb of at
least 1 MLMM-selected SNP for one or more of the 9 tocochroma-
nol phenotypes, with models explaining 3–37% of the phenotypic
variation (Supplementary Table 13). Although at slightly lower
mapping resolution, the por1 gene was located �162 kb from one
of the multiple MLMM-selected SNPs for tocopherol phenotypes.
Even though vte5 and vte7 were detected in GWAS with the mixed
linear model, neither of them was detected with the MLMM ap-
proach. Of the MLMM-selected SNPs within 100 kb of vte4, 2–4
SNPs each were selected for aT, aT3, and cT, whereas only a sin-
gle SNP was selected for each of dT and cT3. Comparably, 2–3
SNPs from a �1.2-Mb genomic region that included hggt1 were se-
lected by the MLMM for dT3, cT3, and RT3; however, only 2 of the
MLMM-selected SNPs were located within 100 kb of hggt1. As has
been previously hypothesized for vte4 in the Goodman–Buckler
panel (Lipka et al. 2013), the selection of multiple independent
SNPs by the MLMM implies that multiple causal variants (i.e. alle-
lic heterogeneity) exist at the vte4 and hggt1 loci in the Ames
panel.

Functional annotation of associated SNPs
We used 2 approaches to identify potential causal variants that
change an encoded amino acid in associated genes. The SnpEff
tool predicted the functional effects of the 320 GWAS-associated
SNPs residing within candidate causal genes, resulting in 15 total
missense variant annotations for por1, por2, vte1, vte4, samt1,
and hggt1 that were predicted to have moderate effects
(Supplementary Table 14). Of the 15 missense variants, 9 had an
available GERP score from one or both of 2 earlier studies (Kistler
et al. 2018; Ramstein et al. 2020). Each of the 9 sites had at least 1
positive GERP score (>0), implying as expected that these sites
within coding regions are evolutionarily constrained (Davydov
et al. 2010; Rodgers-Melnick et al. 2015). Collectively, 6 missense
variants within por1, vte1, samt1, and hggt1 had the highest posi-
tive GERP scores (>2), suggesting that they are more deleterious
(Yang et al. 2017; Lozano et al. 2021). Given that vte1 was not
detected by TWAS and had 3 of the 6 putatively more deleterious
variants, these amino acid changes are of potentially high func-
tional importance as they may impact the activity of tocopherol
cyclase. However, allozymes of VTE1 would need to be experi-
mentally evaluated for enzyme activity levels to determine if any
of these or other variants are compensatory mutations.

eQTL mapping of candidate causal loci
To gain insights into the regulatory patterns of the loci identified
through GWAS, TWAS, and FCT in the Ames panel (Table 2),
eQTL mapping was conducted for each of the 13 identified candi-
date causal gene loci (Fig. 3 and Supplementary Fig. 4). Of the 13
loci, cis-eQTL (peak SNP within 1 Mb of gene) were identified for
all but 1 gene (arodeH2 Zm00001d014737), whereas a total of 5
trans-eQTL were identified for 4 genes (vte5, por2, dxs1, and dxs2)
(Supplementary Table 15). The peak SNPs for cis-eQTL were
within 100 kb of their respective gene, with the exceptions of
arodeH2 Zm00001d014734 (227 kb), dxs2 (808 kb), and vte1 (220 kb)
(Supplementary Table 15). In general, cis-eQTL had smaller
P-values than trans-eQTL, except in the case of dxs2 where its
trans-eQTL had a smaller P-value than its cis-eQTL. This dxs2
trans-eQTL was located on chromosome 6, having a peak SNP
�1.5 kb from phytoene synthase1 (psy1, Zm00001d036345), which

encodes the first and committed step of carotenoid biosynthesis
(Hirschberg 2001).

Colocalization of GWAS and eQTL signals
Through the integration of GWAS and eQTL mapping results via
a probabilistic approach (eCAVIAR; Hormozdiari et al. 2016), we
tested whether a variant was responsible for both GWAS and
cis-eQTL signals at each GWAS-identified candidate causal gene
locus that had a significant cis-eQTL signal: arodeH2
Zm00001d014734, hggt1, hppd1, por1, por2, samt1, vte1, vte4, vte5,
and vte7. Of the analyzed 23 gene–phenotype pairs, 18 pairs had
1–6 SNPs with a colocalization posterior probability (CLPP)
value—probability that a variant is causal for both a GWAS and
eQTL signal—that exceeded a stringent cutoff threshold of �0.01
(Supplementary Fig. 5 and Supplementary Table 16). In all, these
analyses resulted in the selection of 24 unique SNPs within (por1
and hppd1) or flanking (arodeH2 Zm00001d014734, hggt1, por2,
samt1, vte4, and vte5) 8 of the 10 investigated genes. Only one of
the 3 SNPs within a candidate causal gene was an annotated mis-
sense variant (Arg -> Gly; GERP � 2), having been selected from
SNPs within por1 for total tocopherols (Supplementary Table 14).
The other 21 selected SNPs were a median distance of 9.3 kb from
their respective candidate causal genes. With the strongest evi-
dence for colocalization, a SNP (5_25434949) located 603 bp from
por2 had the highest CLPP values (0.12–0.17) for cT, RT, and RTT3,
which was concordant given that this same SNP was the peak
marker for GWAS (mixed linear model: cT, RT, and RTT3) and
cis-eQTL signals at por2 (Fig. 4 and Supplementary Tables 9 and
15). We observed additional statistical support for allelic hetero-
geneity (i.e. independent SNPs with CLPP values �0.01) at hggt1
for dT3 (Supplementary Fig. 5), but not at vte4 which had the
same single SNP (5_205853870, �25 kb from vte4) selected for aT,
aT3, dT, cT, and cT3 (CLPP values: 0.06–0.14). The only other
GWAS detected loci that had significant cis-eQTL signals were
vte1 and vte7, but the CLPP values of SNPs for these 2 loci were
<0.01. Given this finding and that these 2 loci were not detected
in TWAS, the causal variants at vte1 and vte7 are potentially
different for the genetic control of grain tocochromanol and gene
expression variation.

Discussion
Through combining complementary quantitative genetic
approaches that span levels of biological organization, we con-
ducted a comprehensive investigation in the maize Ames panel
of nearly 1,500 lines to elucidate the genetic basis of natural vari-
ation for tocochromanol levels in grain. Imputing the Ames panel
with �12 million SNP markers, generating transcript abundances
of �22,000 genes at a biologically informative stage of kernel de-
velopment, and HPLC profiling of more than 3,500 mature grain
samples empowered implementation of GWAS, TWAS, FCT, and
eQTL approaches. This enabled identification of 13 candidate
causal gene loci with encoded functions responsible for varying
the content and composition of tocochromanols in grain. These
13 genes include a SAM transporter (samt1) and genes involved in
synthesis of the tails of tocochromanols (por1, por2, vte5, vte7,
dxs1, and dxs2), the aromatic head group (2 arodeH2 copies and
hppd1), and the core tocochromanol pathway (vte1, vte4, and
hggt1). Of the 13 identified genes, 8 were detected by 2 or more of
the 3 (GWAS, TWAS, and FCT) genetic mapping approaches
(Table 2). Implicating the importance of regulatory variation, 7 of
the 13 genes were detected by TWAS of which 2, dxs1 and dxs2,
were only detected by TWAS. Taken together, the integrated
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Fig. 3. Manhattan plot of eQTL mapping results of dxs2. Each point represents a SNP with its �log10 P-value (y-axis) from a mixed linear model
analysis plotted as a function of physical position (Mb, B73 RefGen_v4) across the 10 chromosomes of maize (x-axis). The red horizontal dashed line
indicates the significant threshold after Bonferroni correction (a¼ 0.05). The genomic position of dxs2 is demarcated with a blue vertical line on
chromosome 7. A plausible regulating gene, phytoene synthase1 (psy1), within 100 kb of the trans-eQTL peak SNP is indicated by a green vertical line on
chromosome 6.

Fig. 4. GWAS, eQTL, and eCAVIAR results at por2 for dT. a) Three local Manhattan plots (6100 kb) showing the GWAS, eQTL, and eCAVIAR results
at por2 for dT. Each point represents a SNP with its �log10 P-value (y-axis) from a mixed linear model analysis in GWAS or eQTL, or the CLPP value
from eCAVIAR, plotted as a function of physical position (Mb, B73 RefGen_v4) on chromosome 5 (x-axis). The blue rectangle represents the
physical position of por2. The gray rectangle represents the physical position of a second gene (Zm00001d013940, nucleolar complex protein 2
homolog) within the interval. The red dot represents the SNP with the highest CLPP value, and the orange dot represents the other SNP with a
CLPP value passing the �0.01 threshold. b) Pairwise LD (r2) of all SNPs included in (a), with the LD between SNPs with CLPP values �0.01 indicated
in the bottom left.
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GWAS and TWAS method enhanced our efforts to genetically
dissect tocochromanol grain phenotypes at gene-level resolution
in the Ames panel.

Indicative of the high resolution and statistical power of our
multiomic approach applied to the Ames panel that contains
high allelic diversity and rapid LD decay (Romay et al. 2013), 6 of
the 13 genes (samt1, arodeH2 Zm00001d014737, dxs1, vte1, vte5,
and vte7) were not identified in the maize NAM panel
(Diepenbrock et al. 2017). Notably, all but 1 of the 6 genes (vte1)
had not been previously associated with maize grain tocochro-
manols (Li et al. 2012; Lipka et al. 2013; Diepenbrock et al. 2017;
Wang et al. 2018). The association signal at vte5 was novel to the
Ames panel, likely due to a limitation of the US NAM panel in its
sampling of allelic diversity from only 26 diverse founder lines. In
the US NAM panel, samt1, dxs1, and vte7 were each located within
an unresolved NAM JL-QTL CSI, but arodeH2 Zm00001d014737,
which was detected by GWAS and FCT, was in a NAM JL-QTL CSI
that was instead associated with arodeH2 Zm00001d014734
(Diepenbrock et al. 2017). vte1 was present in a NAM JL-QTL CSI
that also included hppd1, but unlike hppd1 the vte1 locus could
not be conclusively identified due to the recombination-
suppressed pericentromeric region in which it resides, which lim-
ited mapping precision (Diepenbrock et al. 2017). The Ames panel,
however, provided the increased resolution necessary to resolve
both hppd1 and vte1 at the gene level. Six other smaller effect loci
identified for grain tocochromanols in the US NAM panel (sds,
vte3, snare, ltp, phd, and fbn) were not identified in the Ames panel,
suggesting that though it has superior physical resolution it has
lower statistical power than a NAM design for identifying small
effect QTL.

This study identified the first metabolite transporter associ-
ated with grain tocochromanols, Zm00001d017937, which enco-
des the maize ortholog of Arabidopsis SAMT1, which transports
SAM into plastids (Bouvier et al. 2006; Palmieri et al. 2006). Maize
samt1 was associated with dT, dT3, and aT3 (Table 2), consistent
with the 2 plastid-localized tocopherol methyltransferases (VTE3
and VTE4) being dependent on it for import of their cosubstrate,
SAM, from the cytosol (Bouvier et al. 2005; DellaPenna 2005).
Knockout and silencing of SAMT1 in Arabidopsis and N. benthamiana,
respectively, resulted in leaves with lower levels of aT and total
chlorophyll (which also requires SAM for its synthesis) and in-
creased cT content (Bouvier et al. 2006), again consistent with re-
duced import of SAM limiting conversion of cT to aT (and dT to
bT) by VTE4 (Bouvier et al. 2006). Given the strong negative rela-
tionship between samt1 expression and dT concentration
revealed by TWAS (Supplementary Table 17), we hypothesize
that weak expression of samt1 results in higher accumulation of
dT by lowering the SAM-dependent activities of VTE4 and/or
VTE3 (Fig. 1).

The identification of por1, por2, vte7, and vte5 loci, which pre-
dominantly impacted tocopherols, is consistent with them all
participating in the generation of PDP for tocopherol synthesis
(Valentin et al. 2006; Diepenbrock et al. 2017; Albert et al. 2022).
The 2 por loci underlie the 2 largest effect JL-QTL for grain RT in
the maize NAM panel (Diepenbrock et al. 2017) and encode a key
enzyme for a highly regulated activity in chlorophyll biosynthe-
sis. Diepenbrock et al. (2017) found por1 and por2 to be correlated
expression and effect QTL (ceeQTL) for RT; i.e. that the JL allelic
effect estimates of these QTL for that trait were significantly as-
sociated with expression levels of the respective gene at multiple
kernel developmental time points. In concordance with these
findings, por1 and por2 were also the 2 most strongly associated
genes with RT via TWAS and FCT in this study. In the Ames

panel, an association signal for dT localized to vte7 both by GWAS
(5% FDR) and more weakly by TWAS (0.6% of most significant
genes). Finally, vte5, one of 2 kinases needed to generate PDP
from phytol (Valentin et al. 2006; Vom Dorp et al. 2015), was asso-
ciated in GWAS with total tocochromanols (RTT3) in maize. In
Arabidopsis, VTE5 was one of the strongest associations with
seed RT (Albert et al. 2022). The association of por1, por2, vte7, and
vte5 with maize grain tocopherol traits in the present study, and
VTE7 and VTE5 with seed tocopherol traits in Arabidopsis further
strengthens the connection between tocopherol and chlorophyll
biosynthesis in seed and suggests it is a major control point for
seed tocochromanol variation in both monocots and dicots.

The dxs1 and dxs2 genes were only associated in TWAS with
tocotrienol, but not tocopherol, traits. Both genes encode the first
and committed step of the methylerythritol 4-phosphate (MEP)
pathway, suggesting they are key control points in the provision
of IPP used to generate GGDP for tocotrienol synthesis. In addition
to our finding of an association of dxs2 transcript abundances
with tocotrienol levels, Diepenbrock et al. (2017) found dxs2 to be
a ceeQTL for tocotrienol traits (dT3, cT3, and RT3). Our
eQTL mapping of dxs2 expression variation identified a major
trans-eQTL on chromosome 6 (Supplementary Table 14) that
mapped to phytoene synthase 1 (psy1, Zm00001d036345). psy1 enco-
des the first and committed step in the biosynthesis of carote-
noids (Hirschberg 2001). In Arabidopsis, flux into the carotenoid
pathway is controlled by PSY activity via feedback regulation of
DXS protein levels (Rodr�ıguez-Villalón et al. 2009). Thus, it is pos-
sible that psy1 indirectly affects tocotrienol levels in maize grain,
even though we did not find psy1 to be significantly associated
with tocotrienols.

Like dxs1 and dxs2, the 3 identified genes involved in aromatic
head group biosynthesis were specific for tocotrienol traits and
include 2 copies of arodeH2 (arodeH2 Zm00001d014734, and
arodeH2 Zm00001d014737) and hppd1. ArodeH catalyzes the oxi-
dative decarboxylation of arogenate to tyrosine, which is then
transaminated to p-hydroxyphenylpyruvic acid (HPP), the sub-
strate for HPPD. The 2 arodeH2 genes are separated by 18 kb and
their GWAS associations were with the same peak SNP
(5_61159296), located �40 kb from Zm00001d014737 and �60 kb
from Zm00001d014734. Only Zm00001d014737 passed the FCT
threshold (<0.3% vs >1.2% for Zm00001d014734), primarily
because of its closer proximity to GWAS SNPs with lower
P-values. A single cis-eQTL was declared for Zm00001d014734
(Supplementary Table 15), while Zm00001d014737 lacked signifi-
cant cis- or trans-eQTL. The current evidence from studies of both
the US NAM and Ames panels cannot exclude the possibility that
both arodeH2 genes are involved in head group biosynthesis.

The enzyme encoded by hppd1 produces HGA, the aromatic
headgroup used for synthesis of tocopherols and tocotrienols. In
concordance with the findings of Diepenbrock et al. (2017), we
found hppd1 to be strongly associated with tocotrienols, but its
weak associations with tocopherols in the US NAM panel were
not replicated in the Ames panel, likely because the allelic effect
sizes for tocopherol traits were below significance in the Ames
panel. In agreement with Diepenbrock et al. (2017) who found
hppd1 was not a ceeQTL, hppd1 was also not detected by TWAS in
the Ames panel at a 0.5% threshold.

The 3 identified genes encoding core activities in the tocochro-
manol pathway (vte1, vte4, and hggt1) impacted tocochromanol
phenotypes in a manner consistent with their enzymatic
activities (Shintani and DellaPenna 1998; Cahoon et al. 2003;
Hunter and Cahoon 2007; DellaPenna and Mène-Saffran�e 2011).
VTE4 methylates c- and d-tocopherols to produce a- and b-
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tocopherols (Shintani and DellaPenna 1998; DellaPenna and
Mène-Saffran�e 2011). vte4 was strongly associated with c and a

isoforms in the Ames panel, consistent with prior GWAS reports
(Li et al. 2012; Lipka et al. 2013; Diepenbrock et al. 2017; Wang et al.
2018; Baseggio et al. 2019), and more weakly with dT (GWAS and
FCT) and RTT3 (GWAS). Similarly, hggt1 encodes the committed
step of tocotrienol biosynthesis and was significantly associated
with all tocotrienol traits, reconfirming hggt1 as the key genetic
controller of tocotrienol variation (Lipka et al. 2013; Diepenbrock
et al. 2017; Baseggio et al. 2019). However, the relatively weaker
associations of hggt1 with tocopherols detected in the US NAM
panel were not reidentified in the Ames panel (Diepenbrock et al.
2017). Both vte4 and hggt1 were designated as ceeQTL by
Diepenbrock et al. (2017) and were the highest ranked genes
detected in TWAS for aT, aT3, and RT3 in the Ames panel,
highlighting the importance of regulatory variation in the core
tocochromanol pathway. VTE1 converts MPBQ and MGGBQ to dT
and dT3, respectively, and we identified associations of vte1 with
dT and dT3 at higher resolution (i.e. significant variants closer to
the gene) than in other diversity panels (Lipka et al. 2013;
Baseggio et al. 2019) (Table 2 and Supplementary Table 9).

By conducting a statistical analysis that uses a probabilistic
method to combine GWAS and eQTL results, we identified a set
of 24 unique SNPs at 8 candidate causal gene loci that contrib-
uted to both GWAS and cis-eQTL signals, providing support for an
eQTL-mediated mechanism in which variants affect tocochroma-
nol levels. Twenty-one of these selected SNPs were located out-
side (up to 136.5 kb) of the 8 genes, with 18 of them upstream of
the 50 end of their respective gene. Even though the selected SNPs
are likely not causal themselves and in strong LD with causal var-
iants that may include copy-number variants, these results imply
that the underlying causal variants for the colocalized signals
predominantly resided in the vicinity of promoters and upstream
cis-regulatory elements. Although cis-eQTL were almost always
the largest effect QTL detected for expression variation of candi-
date casual genes, our study was limited by statistical power and
the multiple testing burden, thus not allowing a more complete
genetic dissection of trans-eQTL (Albert et al. 2018). However, cis
effects tend to be more stable than trans effects across environ-
ments, thus cis-acting causal variants have the potential to be
more transferable across populations when incorporated at the
haplotype level in genomic prediction models (Giri et al. 2021).

Conclusions
We identified 13 candidate causal gene loci responsible for con-
trolling natural variation of 9 tocochromanol grain phenotypes
with encoded activities related to metabolism and metabolite
transport. All 13 loci are highly probable to be causal as most
have been shown by mutagenesis and transgenic modifications
to affect tocochromanol levels in maize and/or other model plant
systems. The 5 novel associations identified for samt1, arodeH2
Zm00001d014737, dxs1, vte5, and vte7 together with finer delinea-
tion of vte1, illustrates the tremendous statistical power and
mapping resolution provided by the Ames panel when combining
GWAS and TWAS results to study the genetic basis of tocochro-
manol variation in maize grain. When integrated with the find-
ings of Diepenbrock et al. (2017) and Wang et al. (2018), there is
now a more complete catalog of the key gene targets that connect
the tocochromanol and chlorophyll pathways for breeding and
engineering of vitamin E and antioxidant levels in maize and
other grain crops. The joint statistical analysis of eQTL mapping
and GWAS results revealed that cis-acting causal variants should
be an important consideration when selecting and combining

favorable alleles across these key loci to optimize the tocochro-
manol profile of maize grain for human health and nutrition.
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All code is available on Github (https://github.com/GoreLab/
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